A Programming System for Children
that is Designed for Usability (Chapter 1)

This document contains only Chapter 1 of the thesis.
For citation, please efer to the full thesis document, which is\ailable at:
http://www .cs.cmu.edu/~pane/thesis

John EPane
CMU-CS-02-127
May 3, 2002

School of Computer Science
Computer Science Department
Carngjie Mellon Unversity
Pittskurgh, A

Thesis Committee:
BradA. Myers (co-chair)
David Garlan (co-chair)
Albert Corbett
James Morris
Clayton Lavis, Uniersity of Colorado

Submitted in partial fulliment of the equirements for the dgee of Doctor of Philosophy
Also appears as: CMU-HCII-02-101

Copyright © 2002 John FPane

This research as sponsored in part by the National SciermenBation under Grant No. IRI-990043&1y opinions,
findings and conclusions or recommendatiosessed in this material are those of the author and do not necessarily
reflect those of the National ScienceuRdation.

Keywords: Natural Programming, HANDS, End-User Programming, Psychology of Pro-
gramming, Empirical Studies of Programmers, Educational Software, Children, User Inter-
face Design, Programming Environments, Programming Language Design, Usability,

Human-Computer Interaction.

Abstract

A programming system is the user interface between the programmer and the computer.
Programming is a notoriously difficult activity, and some of this difficulty can be attributed
to the user interface as opposed to other factors. Historically, the designs of programming

languages and tools have not emphasized usability.

This thesis describes a new process for designing programming systems where HCI knowl-
edge, principles and methods play an important role in all design decisions. The process
began with an exhaustive review of three decades of research and observations about the
difficulties encountered by beginner programmers. This material was catalogued and orga-
nized for this project as well as for the benefit of other future language designers. Where
guestions remained unanswered, new studies were designed and conducted, to examine
how beginners naturally think about and express problem solutions. These studies revealed
ways that current popular programming languages fail to support the natural abilities of

beginners.

All of this information was then used to design HANDS, a new programming system for
children. HANDS is an event-based system featuring a concrete model for computation
based on concepts that are familiar to non-programmers. HANDS provides queries and
aggregate operations to match the way non-programmers express problem solutions, and
includes domain-specific features to facilitate the creation of interactive animations and
simulations. In user tests, children using the HANDS system performed significantly better
than children using a version of the system that lacked several of these features. This is evi-
dence that the process described here had a positive impact on the design of HANDS, and

could have a similar impact on other new programming language designs.

The contributions of this thesis include a survey of the knowledge about beginner program-
mers that is organized for programming system designers, empirical evidence about how
non-programmers express problem solutions, the HANDS programming system for chil-
dren, a new model of computation that is concrete and based on familiar concepts, an eval-
uation of the effectiveness of key features of HANDS, and a case study of a new user-

centered design process for creating programming systems.

Acknowledgements
| would like to extend my heartfelt appreciation to Brad Myers for his insight and guidance
throughout my Ph.D. work. | am very grateful for the many hours that he spent discussing

and critiquing my work.

| am also very thankful for the feedback and support of my co-advisor, David Garlan, and
the other members of my committden Morris, Clayton Lewis anélibert Corbett Albert
was especially generous in the time he spent helping me to design the user studies and ana-

lyze the results.

Many other faculty at CMU and elsewhere gave me valuable feedback and suggestions
along the way. In particular, | would like to thank Bonnie John, Ken Koedinger, Wayne

Gray, Margaret Burnett, Alan Blackwell, and Thomas Green.

| am especially grateful to Bonnie John, Dana Scott and Phil Miller, who were influential
in my decision to become a Ph.D. student, and who helped me gain admission to the pro-

gram.

| would like to thank the undergraduate and master’s students who helped me develop the
ideas in HANDS and who worked on the user studies: Leah Miller, Chotirat “Ann” Ratan-
amahatana, John Chang, Gabe Brisson, Luis Cota, and Ruben Carbonnell. Thanks to Joon-
hwan Lee for creating the graphics in the HANDS system. Thanks to Rob Miller for

contributing his code for multi-level undo in the text editor.

Many thanks to Bernita Myers for acting as liaison to the East Hills Elementary school.
Thanks to Mr. Niklos, the principal, as well as the teachers who allowed us to work in their
classroomsCarol Beavers and John Meighan. Also, thanks to Laurie Heinreicher at Win-
chester-Thurston school. Thanks to Michael Pane for his assistance in pilot testing the user
study evaluating HANDS, and Melody Mostow for doing this and also starring in the
HANDS video. Thanks to Ryan and Reid Myers, who helped us recruit volunteers for one
of the studies. And, special thanks to Ryan for his insightful comparison of HANDS with

Stagecast. And of course, thanks to all of the participants in my studies.

Thanks to Gary Perlman for working with me to develop and evaluate the search interface
for the HCI Bibliography.

Thanks to many additional friends and fellow students who have helped me in various
ways, especially Neil Heffernan, Chuck Rosenberg, Laurie Hiyakumoto, Herb Derby,
Eugene Ng, Adam Berger, Matt Zekauskas, Maria Ebling, Chris Long, and David Eck-
hardt. A special thanks to Drew Morgan whose friendship and counsel was essential to my

ability to make it through this project.

Especially, | would like to express my gratitude to my family for their support and encour-
agement. Most of all, thanks to my wife Barbara, who has given me her patient loving sup-
port throughout. Without this | may have never made it. | hope the rest of our lives will give
me sufficient opportunity to reciprocate. Finally, thanks to Lorenzo, our next big project

and one of the compelling motivations to finish this one.

Contents

Abstract iii
Acknowledgements v

CHAPTER 1 Introduction 1

Historical Contat 2
A User Centered Design Process for Programming Systé&ms
Motivation 4
Thesis Statement4
TamgetAudience and Domain 5
Understanding th&armgetAudience 5
Geneal Design Principles 5
Observations about Existing &ramming Languges 7
Naturalness 9
Studies of Natwiness in Poblem Solving 10
Study of Methods to Specify Queriekl

Model of Computation 12
Visual vs.Textual 13

A Programming System for Chilein that is Designed for Usability Vil

Contents

The HANDS Programming System Desigi3
Computational Model 14
Programming Style and Model of Executiot5
Aggregate Opeations 15
Queries 15
Domain-Specifi Support 16

Evaluation 16

Contritutions 17

Overview of Thesis 18

CHAPTER 2 RelatedNbrk 19

Usability Issues in Programming Systems fogiBeers 19

Systems for Bginners and Children 19
The Lgo Family 19
Boxer 20
ToonTlk 20
AgentSheets 21
Stegecast 21
Small®alk and edys 23
Alice 24
ReheasalWorld 25
Karel the Robot 25
GRAIL 26
Hyperalk 26
AppleScript 26
SK8Script 26
Chart ‘'n’Art 27
cT 27
LabVew 27
Forms/3 27
Visual Basic 27
Java and C# 28
MacGnome 28
Programming by Demonsttion 29
Hank 29

viii A Programming System for Chilein that is Designed for Usability

Contents

CHAPTER 3

CHAPTER 4

The Languge and Structwe in Poblem SolutiongVritten

by Non-Pogrammes 31

Comparison to Lance Milles’Studies 32
Overview of the Studies 33

Study One 34
Participants 34
Materials 35
Procedue 36
ContentAnalysis 36
Results 37
Ovenll Structue 40
Keywords 41
Contmol Structues 42
Computation 44
Discussion 46

StudyTwo 46
Participants 46
Materials 47
Procedue 48
ContentAnalysis 48
Results 49
Keywords 49
Contwol Structues 52
Computation 53

Discussion of Results58
Programming Style 58

Summary ofThese Studies 65

Methods for Exmssing Queries 67

Overvienw 67
Prior work on Boolean Queries70

Design alternaties for Boolean queries70
Tabular query forms 71

Hypotheses 72
AND vs. nested IF 72
NOT vs. Unless 72

A Programming System for Chilein that is Designed for Usability

Contents

Location of Unless 72
Contet-dependent interptation ofAND 73
VerboseAND vs. OR 73
Operfator precedence of ND 73
Parentheses fongression gouping 74
Tahular vs. tetual 74

Method 74
Participants 75
Materials 76
Procedue 76

Results 78

Discussion 80
Textual query variations 81
Match forms vs. te¢ 82
Summary 83

Application of Results 84

CHAPTER 5 The HANDS System37

Motivating Factors in the HANDS Design87

Representation of the Progran89
Cards for Data Staage 89
Computation is €rformed by Handy 94

Programming Style and Model of &xution in HANDS 96
Structue of Event Handler 97
Event Dispath 97
The Events 98
Event Rtterns 99
Event Cads 101

DataTypes 101
NumericValues and Calculations102

Language Syntax 103
Natural-Languae Style 103
Plurals 103
Contol Structue Terminatos 104
Statemenferminatos 104
Parentheseé\re Requied to Indicate Recedence Explicitly 104
List Syntax 105

X A Programming System for Chilein that is Designed for Usability

Contents

Consistency Betweaialues on Cats and in Pogram Code 105
Comments, IndentingndWhite Space 105
Choices for kywords and Special Identfis 106

Statements 106
Operations on Cads 107
Opeimations on Cad Properties 107
Output Statements109
Other Statements109

Expressions 109
Relational Opeators 110
Boolean Opeators 110
Card Existence Fadicate 111
Mathematical Opeators 111
Random 111
Expression for Getting Inputdm User 112

Aggregate Operations 112

Queries 113

Queries and\ggregates in Combination 114
List Operators 114

Loop and Conditional Control Structured19
Iteration Contol Structue 119
Conditional Contol Structue 121

Domain-Specift Support 123
Graphical Objects 123
Animation 124
Mouse Cli& Detection 127
Collision Detection 127
Coordinate System 129

Programming Evironment 129
System-wide Menu Command$29
Event Bowser 131
TestingWindow 136
CardsWindow 137
Handy's Hand 137

Runtime Errors 138

Implementation Details 141
HANDS Runtime Implementatiori4l
Format for Savedifes 143

A Programming System for Chilein that is Designed for Usability

Xi

Contents

CHAPTER 6

CHAPTER 7

Sample Program 143
Importing Components 145
Summary 146

Evaluation 147

User Study 148
Queries and thdlternative 149
Aggregate Opeators and theAlternative 150
Visibility of Data and thé\lternative 150
The Study 152
Participants 152
Materials 152
Procedue 153
Results 153
Informal Observations 155
Summary of Study155
Example Programs 156
Brealout Game 156
Simulation of the Ideal Gas Lawl56
Towers of Hanoi 157
Computing Prime Number 158

Comparison wittAnother System 159
SomeWeaknesses of HANDS 161
Range of Capabilities 161
Programming Stragges 162
Evaluation of Earlier Design ldeasl63
Some Criticisms of HANDS 165
Summary of Ealuation 167

FutureWork 169

Further Exaluation and Usefesting 169

Ideas for Extending HANDS 170
Modularity and Encapsulation 170
Multiple Agents 171

Xii

A Programming System for Chilein that is Designed for Usability

Contents

CHAPTER 8

CHAPTER 9

APPENDIX A

APPENDIX B

Graphics Primitives 172

Improvements to Collision Detection aAdimation 172

Timers 173

Match Forms 173

Wdget Library 173

Dealing with Lage Numbes of Cads 174

Editing and Debgging Support 174

HANDS as a CompleteaEkage for Teaders and Students175
Applications of Results to Othé&reas 175

Model of Computation 175

Export Featues to Other Languges 175

Influence Design Pcess for Futwe Languges and Domains 176

Applications of Mate Forms 176

Conclusion 177

Contritutions 177
Design Pocess 177
HANDS 178
Tabular Method for Expessing Boolean Queriesl78
User Studies 178
Surve of PriorWork 179

Closing Remarks 179
Refeences 181
Languae Syntax Chart 193

Example Pograms 215

Brealout 216
Ideal Gas L& Simulation 222

Towers of Hanoi 228
Extension talowers of Hanoi 229

Primes Siee 230
Compass 230

A Programming System for Chilein that is Designed for Usability

Xiii

Contents

Boundaries 231
Trap Door 232

APPENDIX C Badkground Reseah 233

APPENDIX D Materials flom Study 1 321

APPENDIX E Materials flom Study 2 341

APPENDIX F Materials flom Study 3 381

APPENDIX G Materials flom Study 4 415

Xiv A Programming System for Chilein that is Designed for Usability

CHAPTER 1 Introduction

Only a very small proportion of users can program their computers. However, most could
benefit in some way from this powerful capability, whether to customize and interconnect
their existing applications or to create new ones. As with writing, “the significance of pro-
gramming derives not only from the carefully crafted works of a few professionals, but also
from the casual jottings of ordinary people” [diSessa 1986, p. 859]. For ordinary people,
understandability, familiarity, ease of performing small tasks, and user interface are more
important features in a programming system than technical objectives such as mathematical

elegance, efficiency, verifiability, or uniformity.

Many of the people who try to learn to program are quickly discouraged because it is very
difficult. In fact, it is even challenging for more experienced people who have received
formal training. Why is programming so difficult? Part of the problem is that it requires
problem solving skills and great precision, but this does not fully explain the difficulty.
Even when a person can envision a viable detailed solution to a programming problem, it
is often very hard to express the solution correctly in the form required by the computer.

This is a user-interface problem that has long been recognized but neglected.

A Programming System for Children that is Designed for Usability 1

Introduction

1.1 Historical Context

In 1971, Gerald Weinberg publish&tde Psychology of Computer Programmiwngh the

stated goal to trigger a new field that studies computer programming as a human activity
[Weinberg 1971]. At the time, there was little scientific literature about the human aspect
of programming, and most of it appeared in technical reports and other obscure publica-
tions. The field began to grow quickly after Allen Newell addressed the third B8BM
Conference on Human Factors in Computing Systantslater published his comments in

an article with Stuart Card:

Millions for compilers, but hardly a penny for understanding
human programming language use. Now, programming lan-
guages are obviously symmetrical, the computer on one side,
the programmer on the other. In an appropriate science of
computer languages, one would expect that half the effort
would be on the computer side, understanding how to trans-
late the languages into executable form, and half on the
human side, understanding how to design languages that are
easy or productive to use. Yet we do not even have an enu-
meration of all of the psychological functions programming
languages serve for the user. Of course, there is lots of pro-
gramming languageesign but it comes from computer sci-
entists. And though technical papers on languages contain
many appeals to ease of use and learning, they patently con-
tain almost no psychological evidence nor any appeal to psy-
chological science. [Newell 1985, p. 212]

Soon two workshop series were started, which have become focal points for research in the
usability of programming languages: tRsychology of Programming Interest Group
(PPIG) explores the cognitive aspects of computer programming; achfiigcal Studies

of ProgrammergESP) group focuses on empirical studies of beginners and experts.

Over the past three decades, many researchers have worked to understand the cognitive
demands of programming and the sources of difficulty in existing programming languages
and tools. In addition to the proceedings of the PPIG and ESP workshop series, relevant
work has appeared in theternational Journal of Human-Computer StudfEsmerly
International Journal of Man-Machine Studjethe proceedings of the ACRIHI confer-

ence and the IEEHBuman-Centric Computinformerly Visual Languagésconference,

2 A Programming System for Children that is Designed for Usability

Introduction

and the bookStudying the Novice Programm&oloway 1989b]Psychology of Pro-
gramming[Hoc 1990a], andoftware Design: Cognitive AspefBétienne 2001].

1.2A User Centered Design Pocess ér Programming Systems
It is disappointing that the knowledge gathered over the past thirty years has had so little

influence on the designs of new programming systems (in this document, the term pro-
gramming system is used to encompass the programming language as well as the tools for
viewing, editing, debugging and running programs). In order to help remedy this, | have
organized the prior work that studied beginner programmers so that it might be readily
included among the guidelines and strategies that are used by future programming system
designers. Generally, language designers have focused on technical goals for their systems,
such as to build systems that are scalable, efficient, reusable, provably correct, or that have
mathematical elegance. When they face a design decision that is not determined by these
criteria, they usually choose a solution that is similar to existing languages or one that

appeals to their intuition. Usability has rarely been adopted as a formal objective.

| believe that usability should always be included among the criteria that are considered
during the design of programming systems. Depending on the constraints of a particular
project and target audience, usability may be given more or less weight. However, it is

always worth considering for at least those decisions that are not already determined by

other design criteria

In this thesis, | exemplify a new design process for programming systems, where usability

is treated as a first-class objective:

1. Identify the taget audienceand the domain, that is, the group of people who will be

using the system and the kinds of problemy thidl be working on.

2. Undeistand the taget audienceboth the problems tlgeencounter and theisting rec-
ommendations on koto support their wrk. This includes anwareness of general
HCI principles as well as prioravk in the psychology of programming and empirical
studiesWhen issues or questions arise that are not answered by thegrkpcanduct

new studies to xamine them.

3. Design the ne systenbased on this information.

A Programming System for Children that is Designed for Usability 3

Introduction

4. Evaluate the systeto measure its success, and understaypcham problems that the
users hee. If necessaryedesign the system based on thieuation, and then reval-

uate it.

In this design process, all of the prior knowledge about the human aspects of programming
are considered, and the strategy for addressing any unanswered questions is to conduct user
studies to obtain design guidance and to assess prototypes. For my new programming
system for children, | adopted an extreme position by giving usability precedence over

other objectives.

While my focus has been on beginner programmers, | believe this approach also applies to
experts, and that it can have positive impacts on training and productivity as well as the reli-
ability of professional software systems. Improving the programming systems used by
experts will also affect beginners, because although these systems may not be the best
choices for learning to program, they are often chosen because they are widely available
and familiar to mentors. Everyone would benefit if these programming languages and tools

were more usable.

1.3 Motivation

The goal of this thesis is tmablemore beginners to learn to program for their personal
purposes, with minimal training. There is no explicit goal to teach any particular computer
science concepts, such as recursion, unless the concept is essential to the users achieving
their goals. There is also no requirement for the new programming language produced by
this work to match existing programming languages. Ideally, the new system will be gen-
eral and powerful enough that many people will achieve their objectives without having to
move to other new languages. Hopefully, the need to learn some of the harder computer
science concepts can be deferred or eliminated. For those who do move on to other lan-
guages or even to become computer scientists, their early success with this first language

should ease their difficulties in learning the harder computer science concepts.

1.4Thesis Statement

The thesis statement for this work is:

4 A Programming System for Children that is Designed for Usability

Introduction

this user-centered design process, incorporating principles
from human-computer interaction, psychology of program-
ming, and empirical studies, will result in a unique program-
ming system that is easier to learn and use than more
conventional programming systems.

1.5TargetAudience and Domain

The target audience for my new programming system is children in fifth grade (about ten
years old) or older. | chose to build a system for children because they often have an interest
in learning how to program, but can be quickly discouraged when they try. Their goals are
creative and ambitious — they would like to make programs that are similar to the applica-
tions they use, such as games and simulations. These applications are graphically rich and
highly interactive, unlike the first programs they are likely to create in many professional
programming systems, such as to display “hello world” on the screen. My goal is to provide
an easy entry into creating these interactive graphical programs. However, to the extent
possible, | also tried to create a general purpose language that scales well, so that it is not

inherently limited to creating toy programs.

1.6 Understanding theTargetAudience

In addition to general design principles that are applicable to all users, there is a wealth of
information available about how beginner programmers work and the problems they
encounter. This section summarizes the prior work and briefly describes the new studies |

conducted to examine additional questions.

1.6.1 General Design Principles
The field ofHuman Computer InteractiofiHCI) has general principles and heuristics that

can be applied to programming system defNjalsen 1994]

» simple and natural dialog — user ingarés should be simp#fil, and should match the
users task in as natural aay as possible, such that the mapping between computer

concepts and user concepts becomes straiglafdrw

» speak the uses’language — the terminology in user irdeds should be based on the
users language, instead of using system-oriented terms or attaching non-standard

meanings todmiliar words.

A Programming System for Children that is Designed for Usability 5

Introduction

* minimize user memory load — the system should takr the lirden of memory from

the user
» consisteng — the same command or action shouldsgts hae the same &dct.

» feedback — the system should continuously inform the user about what it is doing and
how it is interpreting the usex’input.
» clearly marled «its — the system shouldfef the user an easyay out of as mansit-

uations as possible, includingays to undo.

» shortcuts — the system should reakpossible forperienced users to perform fre-

guently used operations quickly

» good error messages — the system should report errors politely in clear langoigge, a
obscure codes, use precise rather ttzayug or generakplanations, and include con-

structve help for solving the problem.

» prevent errors — where possible, the user iatsgfshould be structured teoad error

situations.

* help and documentation — the help system and documentation shouttk@auick

way for users to fid task-specié information when theare haing a problem.

Many of these principles are routinely violated by programming systems — several exam-

ples are presented @hapter 2

When designing and evaluating programming systems, it is also useful to consider the more
specific evaluation criteria in tl@ognitive Dimensions of Notatioframework (Cognitive
Dimensions, for short) [Blackwell 2000, Green 1996]:

* viscosity — the system should not resist change; it should not requiyeusemactions

to accomplish one small goal.

* visibility — the information needed by the programmer gtarticular time should be

visible or \ery easy to access.

* premature commitment — the system shouldfo@te the user to go about the job in a

particular order, or make a decision before the needed information is available

* hidden dependencies — important links between entities should be visible.

6 A Programming System for Children that is Designed for Usability

Introduction

* role expressveness — the purpose of an entity should be readily apparent.
 error pronenessthe notation should protectagst slips and errors.

» closeness of mapping — the systemwperations should closely match theywasers

think about problem solutions.

» secondary notation — the system shouldmative programmer to communicate addi-

tional information with comments, typograptayout, etc.
» progressie evaluation — the system should permit users to test partial programs.

» diffuseness — small goals should not requiteaerdinarily long solutions or lge

amounts of screen space.

» provisionality —the system should allothe user to si¢ch out uncertain parts of their

solution.

» hard mental operations — none of the systasperations should require great mental

effort to use.
» consisteng — similar notations should mean similar things, and versa:

» abstraction management — the system shouldge@ vay to define nev facilities or
terms that aller the user toxgress ideas more clearly or succingiyt it should not

force users to use this capability right from the start.

These factors are sometimes in conflict, so improving the system along one dimension can
result in reduced performance on another. Tradeoffs are necessary, and in making these

tradeoffs it is useful to consider cognitive models and observations from empirical studies.

1.6.2 Obsevations about Existing Piogramming Languages

The principles osimple and natural dialog, speak the user’s languaggcloseness of
mappingare reinforced by cognitive models that define programming as a process where
the user translates a mental plan into one that is compatible with the computer [Hoc 1990b].
The language should minimize the difficulty of this translation by providing operators that
match those in the plan, including any that may be specific to the topic or domain of the
program. “The closer the programming world is to the problem world, the easier the prob-

lem-solving ought to be.... Conventional textual languages are a long way from that goal”

A Programming System for Children that is Designed for Usability 7

Introduction

[Green 1996, p. 146]. Hix & Hartson describe the general usability guideluse togni-

tive directnesgHix 1993, p. 38] to “minimize the mental transformations that a user must
make. Even small cognitive transformations by a user take effort away from the intended
task.” If the language does not provide these high-level operators, programmers have to
assemble lower-level primitives to achieve their goals. This synthesis is one of the greatest

cognitive barriers to programming [Lewis 1987].

Programmers are often required to think about algorithms and data in ways that are very
different than the ways they already think about them in other corff@xtsxample, a typ-
ical C program to compute the sum of a list of numbers includes three kinds of parentheses

and three kinds of assignment operators in five lines of code:

sum = 0;

for (i=0; i<numlitems; i++) {
sum += itemsi;

}

return sum;

In contrast, this can be done in a spreadsheet with a single line of code usungdiper-

ator [Green 1996]The mismatch between the way a programmer thinks about a solution
and the way it must be expressed in the programming language makes it more difficult not
only for beginners to learn how to program, but also for people to carry out their program-
ming tasks even after they become more experienced. One of the most common bugs
among professional programmers using C and C++ is the accidental use of “=" (assign-
ment) instead of “==" (equality test). This mistake is easy to make and difficult to find, not
only because of typographic similarity, but also because “=" operator does indeed mean

equality in other contexts such as mathematics.

Soloway, Bonar & Erlich [Soloway 1989a] found that the looping control structures pro-
vided by modern languages do not match the natural strategies that most people bring to
the programming task. Furthermore, when novices are stumped they try to transfer their
knowledge of natural language to the programming task. This refseiits in errors

because the programming language defines these constructs in an incompatible way [Bonar

1989]. For exampldhenis interpreted aafterwardsinstead ofn these conditions

8 A Programming System for Children that is Designed for Usability

Introduction

1.6.3Naturalness

There are two ways to improve closeness of mapping. One is to teach people to think more
like computers; the other is to make the programming system’s operations match how users
think. The latter approach is preferred in this thesis. A primary goal of my programming
system is to support tmaturalways that non-programmers think about problem solutions,
instead of making them learn new and often unnatural ways to accomplish their objectives.
In this context, natural meaegpected or acceptetf people have a viable approach to
solving problems, the ideal programming system would support that solution directly,
without requiring the programmer to learn anything new or perform additional work in

translating their ideas into program code.

By this definition, naturalness is not universal for all humans. People from different back-
grounds and cultures, or from different points in history, are likely to bring different expec-
tations and methods to the programming task. Therefore, a programming system that is
designed to be natural for a particular target audience is unlikely to be universally optimal.
This is why identifying the target audience is an intrinsic part of the design process, and
why the process itself is important. It will have to be applied over and over again, in order
to best support the particular characteristics of the people who will use each new program-

ming system.

Striving for naturalness does not necessarily imply that the programming language should
use natural language. Programming languages that have adopted natural-language-like syn-
taxes, such as Cobol [Sammet 1981] and HyperTalk [Goodman 1987], still have many
usability problems. For exampldyperTalk often violates the principle of consistency
[Thimbleby 1992] There are also many ambiguities in natural language that are resolved

by humans through shared context and cooperative conversation [Grice 1975].

Novices attempt to enter into a human-like discourse with the computer, but programming
languages systematically violate human conversational maxims because the computer
cannot infer from context or enter into a clarification dialog [Pea 1986]. The use of natural
language may compound this problem by making it more difficult for the user to under-

stand the limits of the computer’s intelligence [Nardi 1993].

A Programming System for Children that is Designed for Usability 9

Introduction

However, these arguments do not imply that the algorithms and data structures should not
be close to the ways people think about the problem. In fact, leveraging users’ natural-lan-
guage-like knowledge in a more formalized syntax can be an effective strategy for design-

ing end-user-programming languages [Bruckman 1999].

There are additional motivations for why a more natural programming language might be
better. A programming language is a type of user interface, and user interfaces in general
are recommended to batural so they are easier to learn and use, and will result in fewer
errors. Naturalness is closely related to the concept of directness which, agipartof
manipulation is a key principle in making user interfaces easier to use. Hutchins, Hollan

& Norman describéirectnesss the distance between one’s goals and the actions required
by the system to achieve those goals [Hutchins 1986]. Reducing this distance makes sys-
tems more direct, and therefore easier to learn. User interface designers and researchers
have been promoting directness at least since Shneiderman identified the concept [Shnei-

derman 1983], but it has not been a consideration in most programming language designs.

1.6.4 Studies of Naturalness in Fxblem Solving

This thesis presents two studies examining the language and structure that children and
adults naturally use before they have been exposed to progran@hiagtér 3. In these

studies, | gave programming tasks to non-programmers and they solved these problems by
writing and sketching their answers on paper. The tasks covered a broad set of essential pro-
gramming techniques and concepts, such as control structures, storage and manipulation of
data, arithmetic, Boolean logic, searching and sorting, animation, interactions among
objects, etc. In posing the problems, | was careful to minimize the risk that my materials

would influence the answers, so | used pictures and very terse captions.
Some observations from these studies were:

* An event-based or rule-based structu@sweften used, where actions werestaln

response tovents. fer example, “when pacman loses all higels, its game eer”

» Aggregate operators (acting on a set of objects all at once) were used much more often
than iterating through the set and acting on the objectadiodily. For example,

“Move everyone belar the 5th place den by oné.

10 A Programming System for Children that is Designed for Usability

Introduction

» Participants did not construct compldata structures and #&se them, lt instead
performed content-based queries to obtain the necessary data when neredeanF
ple, instead of maintaining a list of monsters and iterating through the list checking the

color of each item, thewould say “all of the blue monstérs.

* A natural language styleas used for arithmetixpressions. & example, “add 100 to

score€.

» Objects werexpected to automatically remember their state (such as motion), and the
participants only mentioned changes in this staie ekample, “if pacman hits aall,

he stops.

» Operations were more consistent with list data structures, rather than aoregarf-
ple, the participants did not create space before inserting abyject into the middle

of a list.

» Participants rarely used Booleaxpeessions, lt when thg did they were likely to
make errorsThat is, their gpressions were not correct if interpreted according to the

rules of Boolean logic in most programming languages.

» Participants often dre pictures to s&tch outthe layout of the program, but resorted to

text to describe actions and behaviors.

1.6.5Study of Methods to Specify Queries

Because content-based queries were prevalent in non-programmers’ problem solutions, |
began to explore how this might be supported in a programming language. Queries are usu-
ally specified with Boolean expressions, and the accurate formulation of Boolean expres-
sions has been a notorious problem in programming languages, as well as other areas such
as database query tools [Hildreth 1988, Hoc 1989]. In reviewing prior research | found that
there are few prescriptions for how to solve this problem effectively. For example, prior
work suggests avoiding the use of the Boolean keywsiI3 OR, andNOT [Greene

1990, McQuire 1995, Michard 1982], but does not recommend a suitable replacement

guery language.

Therefore | conducted a new study to examine the ways untrained children and adults nat-

urally express and interpret queries, and to test a new tabular query form that | designed

A Programming System for Children that is Designed for Usability 11

Introduction

calledmatch formgshown inFigure 1-). This study confirmed that relying on the Boolean
keywords, as well as parentheses for grouping, would result in poor usability. Textual alter-
natives that avoided the Boolean keywords were not reliably better. However, the match

forms were successful.

objects that match objects that match
| blue | circle
not sguare | not green

Figure 1-1.Match forms gpressing the query: (blue and not square) or (circle and not green)

Each match form contains a vertical list of slots. Conjunction is specified by placing terms
into these slots, one term per slot. Negation is performed by prefacing a term W®The
operator, and disjunction is specified by placing additional match forms adjacent to the first
one. This design avoids the need to nam&thB andOR operators, provides a clear dis-
tinction between conjunction and disjunction, and makes grouping explicit. Match forms
are suitable for incorporation into programming systems. When compared with textual
Boolean expressions, users performed significantly better when they expressed their que-
ries using match forms. When interpreting already-written queries, performance was about
equal using either languageéhapter 4contains full details about match forms and this

study, as well as an application of this work to the search interface for thele@lirikib-

liography.

1.6.6 Model of Computation

One of the biggest challenges for new programmers is to gain an accurate understanding of
how computation takes place. Traditionally, programming is described to beginners in
completely unfamiliar terms, often based on the von Neumann model, which has no real-
world counterpart [du Boulay 1989a, du Boulay 1989b]. Beginners must learn, for exam-
ple, that the program follows special rules of control flow for procedure calls and returns.

There are complex rules that govern the lifetimes of variables and their scopes. Variables

12 A Programming System for Children that is Designed for Usability

Introduction

may not exist at all when the program is not running, and during execution they are usually
invisible, forcing the programmer to use print statements or debuggers to inspect them. This
violates the principle of visibility, and contributes to a general problem of memory over-
load [Anderson 1985, Davies 1993].

Usability could be enhanced by providing a different model of computation that uses con-
crete and familiar terms [Mayer 1989, Smith 1994]. Using a different model of computation
can have broad implications beyond beginners, because the model influences, and perhaps

limits, how experienced programmers think about and describe computation [Stein 1999].

Sectionl.7.lintroduces the new model of computation | invented to address this problem.

1.6.7Visual vs.Textual

In visual languages, graphics replace some or all of the text in specifying programs. Propo-
nents of visual programming languages often argue that reducing or eliminating the text in
programming will improve usability [Smith 1994]. However, much of the underlying ratio-
nale for this expectation is suspect [Blackwell 1996]. User studies have shown mixed
results on the superiority of visual languages over text (e.g. [Green 1992]), and the advan-
tage of visual languages tends to diminish on larger tasks. It is useful to note that one of the
most successful end-user programming systems to date is the spreadsheet, which is mostly
textual [Nardi 1993].

My new programming system supports the hybrid graphical-textual approach used by the
participants in my studies, and relies on the programming environment to alleviate some of
the difficulties of textual languages. For example, during program entry, context-sensitive
menus like those in Microsoft’s Visual Studio can make it easier to know what choices are
available and to help the user to enter the program correctly. This support could be aug-
mented with a drag-and-drop syntax-directed editor, as seen in Squeak’s eToys interface
[Steinmetz 2001] and other systems. The system can also provide visual representations for

textual elements that are difficult, such as the match forms mentioSattionl.6.5

1.7The HANDS Programming System Design
All of these observations have influenced the design of my new programming system,

which is called HANDS (Human-centered Advances for the Novice Development of Soft-

A Programming System for Children that is Designed for Usability 13

Introduction

ware). HANDS uses an event-based language that features a new concrete model for com-
putation, provides queries and aggregate operators that match the way non-programmers
express problem solutions, has high-visibility of program data, and includes domain-spe-
cific features for the creation of interactive animations and simulations. The HANDS

system is detailed iG@hapter 5

1.7.1Computational Model

In HANDS, the computation is represented as an agent named Handy, sitting at a table
manipulating a set of cards (déigure 1-3. All of the data in the system is stored on these
cards, which are global, persistent and visible on the table. Each card has a unique name,
and an unlimited set of name-value pairs, called properties. The program itself is stored in
Handy’sthought bubbleTo emphasize the limited intelligence of the system, Handy is por-
trayed as an animal — like a dog that knows a few commands — instead of a person or a robot

that could be interpreted as being very intelligent.

=] board

The bee with the most nectar is: Stripes
He has this much nectar: 8

All the bees have collected: 45

777
178

bee
bumbleb.gif

Figure 1-2. The HANDS system portrays the components of a program on a roundMbtida is storec
on cards, and the programmer inserts code into Hartldgught bbble at the upper left corn&hen the
play kutton is pressed, Handydias responding tovents by manipulating cards according to the
instructions in the thoughubble.This is described in more detail Ghapters.

14 A Programming System for Children that is Designed for Usability

Introduction

1.7.2 Pogramming Style and Model of Execution

HANDS is event-based, the programming style that most closely matches the problem
solutions in my studies. A program is a collection of event handlers that are automatically
called by the system when a matching event occurs. Inside an event handler, the program-

mer inserts the code Handy should execute in response to the event.

1.7.3Aggregate Operations

In my studies, | observed that the participants used aggregate operators, manipulating
whole sets of objects in one statement rather than iterating and acting on them individually.
Many languages force users to perform iteration in situations where aggregate operations
could accomplish the task more easily [Miller 1981]. Requiring users to translate a high-
level aggregate operation into a lower-level iterative process violates the princiloleesf

ness of mapping

HANDS has full support for aggregate operations. All operators can accept lists as well as

singletons as operands, or even one of each. For example,
e 1+1 evaluatest@

e 1+(1,2,3) evaluates t@,3,4

e (1,23)+1 evaluates t@,3,4

e (1,2,3) +(2,3,4) evaluates t@®,5,7

1.7.4 Queries

In my studies, | observed that users do not maintain and traverse data structures. Instead,
they perform queries to assemble lists of objects on demand. For example, they say “all of
the blue monsters.” HANDS provides a query mechanism to support this. The query mech-

anism searches all of the cards for the ones matching the programmer’s criteria.

Queries begin with the woall. If a query contains a single value, it returns all of the cards
that have that value in any propeiffygure 1-3contains cards representing three flowers

and a bee to help illustrate the following queries.

* all flowers evaluates tmrchid, rose, tulip

A Programming System for Children that is Designed for Usability 15

Introduction

[rose: : oy Elerenid i |] bumble 550
name | waluoe narme | wvalue name | wvalue narme | walue
cardname |rose cardname |tulip cardname |orchid cardname |bumble
x 208 x 350 . x 636
Y an W an W a0 W a0
group flower qroup flower qroup flower qroup bee
nectar 100 nectar 150 nectar 75 nectar 0

Figure 1-3.When the systenvaluates the quersf flowers it returnsrose, tulip, orchid

* allbees evaluates tdoumble
» allsnakes evaluates to the empty list

HANDS permits more complex queries to be specified with traditional Boolean expres-
sions, however the intention is to eventually incorporate match forms into the system as an

option for specifying and displaying queries.

Queries and aggregate operations work in tandem to permit the programmer to concisely

express actions that would require iteration in most languages. For example,

» set the nectar of all flowers to O

1.7.5 Domain-Specifi Support

HANDS has domain-specific features that enable programmers to easily create highly-
interactive graphical programs. For example, the system’s suite of events directly supports
this class of programs. The system automatically detects collisions among objects and gen-
erates events to report them to the programmer. It also generates events in response to input
from the user via the keyboard and mouse. It is easy to create graphical objects and text on

the screen, and animation can be accomplished without any programming.

1.8 Evwaluation

To examine the effectiveness of three key features of HAND& es, aggregate opera-
tions, and data visibilityl conducted a study comparing the system with a limited version
that lacks these features. In the limited version, programmers could achieve the same

results but had to use more traditional programming techniques. Fifth-grade children were

16 A Programming System for Children that is Designed for Usability

Introduction

able to learn the HANDS system during a three-hour session, and then use it to solve pro-
gramming problems. Children using the full-featured HANDS system performed signifi-
cantly better than their peers who used the reduced-feature version. This is evidence that
this set of features improves usability over the typical set of features in programming sys-

tems.

In a separate informal study, a high-school student compared hands with Stagecast, a com-
mercial programming environment for children [Earhart 1999]. He implemented a game in
both systems, and concluded that HANDS was easier to use, enabled him to implement
more features, and required fewer lines of code. In addition, several more experienced pro-
grammers have used HANDS to implement a broad variety of programs to explore its range

of capabilities.

Evaluation of the HANDS system is detaileddhapter 6

1.9 Contributions

The contributions of this thesis are:

a case study of a wedesign pocesdor creating programming systems, where usabil-

ity is a frst class objecte;

» theHANDS pogramming systerfor children, which has a unique set of features due to
its usercentered design, geral of which were demonstrated to be more usable than

those found in typical programming systems;

» a nev model of computatiqror way of thinking about programs, that is concrete and
based ondmiliar concepts, unléthe traditionaluring machine oren Neumann

machine models;

* ageneral-purpogarogramming languge that ofers database-style access to the pro-

gram’ data, and in which all operators can be applied to singletons and lists;

* matd forms a talular method for ¥pressing queries thatas compared to xeual

expressions and st to improve bginners’performance;

» a nev query interfacdor theHCI Bibliograpty (www.hcibiborg), based on match

forms, which reduces user errors in comparison to the oldantesrf

A Programming System for Children that is Designed for Usability 17

Introduction

» empirical &idenceabout hav non-programmersx@ress problem solutions, which can
be used to help designers generate and select programming system featuresdbat pro
a close mapping between those problem solutions and Xpeession in program

code;

» empirical sidencecharacterizing the kinds of errors made byperienced users of

textual Boolean ®pressions;

* auser studylemonstrating the fefctiveness of queries, aggege operations, and high-
visibility of data, in comparison to the typical features sets of programming systems;

and,

» abroad survg of the prior vork on bginner programmers, ganized in a form that can

be used by other programming system designers (appesppamdixC).

1.10 Owerview of Thesis

The remainder of this thesis is organized as foll@&pter Aescribes the prior empirical
work on beginner programmers as well as other programming systems for beginners and
children;Chapter 3escribes the first two studies examining the language and structure in
non-programmers solutions to programming problédhsipter Aescribes the third study,
examining methods for specifying queries, and provides details about matchG@twamps;

ter 5details the design of the HANDS systeiiapter 6describes a fourth study, to eval-
uate features of HANDS, as well as other less formal evaluavagter Mdiscusses the
implications of this work and some ideas for future work; @hepter 8ives some con-

cluding remarks.

Supplemental materials are contained in appendiggsendixA contains a formal speci-
fication of the HANDS language syntakppendixB contains some example programs
implemented in HANDSAppendixC contains the full text of my technical report survey-
ing usability issues in programming systems for begindggendixD contains the mate-
rials used in the first studyppendixE contains the materials used in the second study;
AppendixF contains the materials used in the third study;AmoendixG contains the

materials used in the fourth study.

18 A Programming System for Children that is Designed for Usability

Introduction

This document contains only Chapter 1 of the thesis.
For citation, please efer to the full thesis document, which is\ailable at:
http://www .cs.cmu.edu/~pane/thesis

A Programming System for Children that is Designed for Usability

19

Introduction

20

A Programming System for Children that is Designed for Usability

CHAPTER 9 Refeences

Anderson, J.R. and Jeés, R. (1985). “Nwice LISP Errors: Undetected Losses of Infor
mation fromWorking Memory’ Human-Computer Interactialt 107-131.

Anick, PG., Brennan, J.D., Flynn, R.A., Hanssen, DAR:gy, B. and Robbins, J.M.
(1990).A Direct Manipulation Interice for Boolean Information Retvisd via Nat-
ural Language QuerfProceedings of th€hirteenthAnnual InternationaACM
SIGIR Conference on Research and/€epment in Information Retrl. Brus-
sels, Belgium: 135-150.

Baraf, D. (1989). Analytical Methods for Dynamic Simulation of Non-Penetrating Rigid
Bodies: Computer Graphic83(3): 223-232.

BiermannA.W., Ballard, B.Wand SigmonA.H. (1983). ‘An Experimental Study of Nat-
ural Language Programmifidnternational Journal of Man-Machine Studie(1):
71-87.

Blackwell,A.F. (1996). Metacogniie Theories oWisual ProgrammingiVhat DoWe
Think We Are Doing?Proceedings of théL'96 IEEE Symposium oWisual Lan-
guagesBoulder CO, IEEE Computer Society Press: 240-246.

Blackwell,A.F. and Greenl.R.G. (2000)A Cognitive Dimensions Questionnaire Opti-
mised for UsersProceedings of the 12nnual Meeting of the Psychology of Pro-

A Programming System for Children that is Designed for Usability 181

References

grammers Interest Grouf. F. Blackwell and E. Bilotta. Corigliano Calabro, Italy
Edizioni Memoria: 137-154.

Bonar J. and Solvay, E. (1989). Preprogramming Kwéedge:A Major Source of Mis-
conceptions in Nace Programmers$tudying the Neice ProgrammeliE. Solavay
and J. C. SpohreHillsdale, NJ, Lavrence Erlbaurssociates: 325-353.

Bonar J.G. and Cunningham, R. (1988). Brid@etoring the Programming Process.
IntelligentTutoring Systems: Lessons Learn@dPsotka, L. D. Masgand SA.
Mutter. Hillsdale, NJ, Lawrrence Erlbaurssociates: 409-434.

Bourne, L.E. (1966)Human Conceptual Betimr. Boston Allyn & Bacon.

BruckmanA. and Edvards, E. (1999). Shouldle Leverage Natural-Language Knb
edge?An Analysis of User Errors in a Natural-Language-Style Programming Lan-
guage Proceedings of the 1999 Conference on Hunetdfs in Computing
SystemsPittsturgh, A, ACM Press: 207-214.

Brusilovsky, P, Calabrese, E., Hwecky, J., Kouchnirenk, A. and Miller, P (1997).
“Mini-languagesA Way to Learn Programming Principfegducation and Infer
mationTechnologie<(1): 65-83.

Carriero, N. and Gelerntdd. (1989). “Linda in Contd.” Communications of thACM
32(4): 444-458.

Caner, N. and LesseW. (1994). “The Ewlution of Blackboard Contrd\rchitectures.
Expert Systems witApplications7(1): 1-30.

Conway, D.M. (1998) An Algorithmic Approach to English PluralizatioRroceedings of
the Secondnnual Perl Conferenc€. Salzenber. San Jose, CA, O'Reilly

Conway, M., Audia, S., Burnettel., Cosgree, D., Christiansen, K., Deline, R., Durbin,
J., GossweileR., Koga, S., Long, C., MalloryB., Miale, S., Monkaitis, K., &ten,
J., Pierce, J., Shochet, J., Staack, D., Stearns, B., Stdakl&tugill, C., Viega, J.,
White, J. Williams, G. and BRusch, R. (2000Alice: Lessons Learned from Build-
ing a 3D System for Naces.Proceedings of CHI2000 Conference on Humaeo-F
tors in Computing Systems. Turner and G. SzwillisThe Hague, Netherlands,
ACM Press: 486-493.

Conway, M.J. (1997)Alice: Easy-to-Learn 3D Scripting for Nixes. Ph.DThesis. Uni-
versity ofVirginia. School of Engineering ambplied Sciencg242pages.

182 A Programming System for Children that is Designed for Usability

References

Cordy, J.R. (1992). Hints on the Design of User Irdeef Language Features — Lessons
from the Design oTuring. Languages for Desloping User Intedces B.A. Myers.
Boston, Jones and Bartlett: 329-340.

CypherA. and Smith, D.C. (1995). KidSim: End User Programming of Simulatienas.
ceedings of CHI'95 Conference on Humaweters in Computing SystemiServer,
ACM: 27-34.

Davies, S.P(1993). Externalising Information During CodiAgtivities: Effects of
Expertise, Emironment andrask.Empirical Studies of Programmers: Fift¥ork-
shop C. R. Cook, J. C. Scholtz and J. C. Spoltaio Alto, CA, Ablex Publishing
Corporation: 42-61.

Détienne, F(1990). Dificulties in Designing with an Object-Oriented Programming Lan-
guage An Empirical StudyProceedings of INTER&T '90 Conference on Com-
puterHuman Factors Cambridge, England: 971-976.

Détienne, F(2001).Software Design: Cognite Aspects London, Springer

DiGiano, C., Kahn, K., CypheA. and Smith, D.C. (2001). “Intgating Learning Sup-
ports into the Design &fisual Programming Systerigournal oVisual Languages
& Computing12(5): 501-524.

DiGiano, C.J. (1996). Self-Disclosing Desigools:An IncrementaRpproachToward
End-User Programming. Bould&€O, Unversity of ColoradoDepartment of Com-
puter Scienc@&echnical Repor€U-CS-822-96154 pages.

diSessaA.A. andAbelson, H. (1986). “Boar: A Reconstructible Computational
Medium?” Communications of thAaCM 29(9): 859-868.

du Boulay B. (1989a). Some Oitulties of Learning to PrograrBtudying the Nwice
ProgrammerE. Solavay and J. C. Spohtetillsdale, NJ, Larence Erlbaumsso-
ciates: 283-299.

du Boulay B., O'SheaT. and Monk, J. (1989bT.he Black Box Inside the Glass Box: Pre-
senting Computing Concepts toWees.Studying the Neice ProgrammelE. Solo-
way and J. C. Spohrdiillsdale, NJ, Larence Erlbaum\ssociates: 431-446.

Earhart, C., Ed. (1999%tagecast Creatdeacher's GuiddPaloAlto, CA, Stagecast Soft-
ware, http://wwwstagecast.com.

A Programming System for Children that is Designed for Usability 183

References

Essens, B.M.D., McCann, C.A. and Haxtelt, M.A. (1992) An Experimental Study of
the Interpretation of Logical Operators in Database Quer@ognitve Egonom-
ics: Contrilutions from Experimental Psycholody. C. v d.Veer S. Bagnara and
G.A. M. KempenAmsterdam, North-Holland, Elgeer Science Publishers: 201-
225.

Finzer W.F. and Gould, L. (1993). Rehear§#brid: Programming by Rehears#@fatch
What | Do: Programming by Demonstratién Cypher MIT Press.

Galotti, K.M. and Ganong/V.F, 11l (1985). “What Non-Programmers Kwdbout Pro-
gramming: Natural Language Procedure Speatifon’ International Journal of
Man-Machine Studief2: 1-10.

Glass, R.L. (1995). “O0 Claims — Naturalness, Seamlessness Seem Do8bffukare
Practitioners(2).

Goodman, D. (1987)he Complete HyperCard Handbo®ew York, Bantam Books.

Gould, L. and FinzeW. (1984). “Programming by Rehears&8YTE Magazine9(6).

Green,T.R.G. (1990)The Nature of Programming@sychology of Programming.-M.
Hoc, T. R. G. Green, R. Samurcay and D. J. Gilmore. Londoademic Press: 21-
44,

Green,T.R.G. and Petre, M. (1992)henVisual Programs are Harder to Read thexx
tual ProgramsHduman-Computer Interactiofiasks and Qanisation, Proceedings
of ECCE-6 (6th European Conference on Cogaikigonomics) G. C. \an der
Veer M. J.Tauber S. Bagnarola and Mintavolits. Rome, CUD.

Green,T.R.G. and Petre, M. (1996). “Usabilitynalysis ofVisual Programming B#ron-
ments:A 'Cognitive Dimensions' Franveork.” Journal oVisual Languages and
Computing7(2): 131-174.

Greene, S.L., Ddin, S.J., Cannata,P. and Gomez, L.M. (1990). “No IFANDs, or
ORs:A Study of Database Queryifidnternational Journal of Man-Machine Stud-
ies32(3): 303-326.

Grice, H.P(1975). Logic and CaersationSyntax and Semantics Ill: Speektis. P
Cole and J. Ma@jan. Nev York, Academic Press.

184 A Programming System for Children that is Designed for Usability

References

Gross, P(1999).Director 7 and Lingd\uthorized Peachpit Press.

Hays, J.G. and Burnett, M.M. (199%) GuidedTour of Forms/3, Orgon State Uner-
sity: Dept. of Computer Sciendechnical Repord5-60-6.

Hildreth, C. (1988). Intelligent Inteates and Retnral methods for Subject Search in
Bibliographic Retrigal SystemsResearch, EducatioAnalysis & Design Spring-
field, IL.

Hix, D. and Hartson, H.R. (1993)eveloping User Intedces: Ensuring Usability
Through Product and Proced&aw York, New York, Johnwiley & Sons, Inc.

Hoc, J.-M. (1989). D&Ve Really Hae Conditional Statements in Our Brair&Rdying
the Novice ProgrammelE. Solavay and J. C. Spohrétillsdale, NJ, Lavrence
ErlbaumAssociates: 179-90.

Hoc, J.-M., Greenl.R.G., Samur¢ayR. and Gilmore, D.J., Eds. (1990B%ychology of
ProgrammingComputers and People Series. Londaademic Press.

Hoc, J.-M. and Nguyen-XuaA, (1990b). Language Semantics, Mental Models and
Analogy Psychology of Programming.-M. Hoc,T. R. G. Green, R. Samurc¢ay and
D. J. Gilmore. Londor\cademic Press: 139-156.

Hutchins, E.L., Hollan, J.D. and Norman, D.A. (198Birect Manipulation Intedces
Hillsdale, NJ, Lavrence Erlbaum\ssociates.

Ingalls, D.H.H. (1981). Design Principles Behind Smallt&8k.TE Magazine August
1981.

Joers, J. (19995tagecast Creator Creator's GuiBgoAlto, CA, Stagecast Softave,
http://www.stagecast.com/.

Jones, S. (1998). Graphical Query Speatfon and Dynamic Result Riews for a Digi-
tal Library. Proceedings of theCM Symposium on User Interfe Softvare and
Technology 143-151.

Kahn, K. (1996). “donTalk: An Animated Programming Eironment for Childreri.
Journal ofVisual Languages and ComputiA¢R): 197-217.

A Programming System for Children that is Designed for Usability 185

References

Kahn, K. (1999). From Prolog and ZeldaTmonTalk. Proceedings of the 1999 Interna-
tional Conference on Logic Programmirigy De Schrge, MIT Press.

Kohl,A. and Rupiettay. (1987).The Natural Language Metaphéin Approach tcAvoid
Misleading Expectation®roceedings of IFIP INTERBAT'87: Human-Computer
Interaction 555-560.

Lewis, C. and Olson, G.M. (1987). Can Principles of Cognitiowérahe Barriers to Pro-
gramming“Empirical Studies of Programmers: Secvorkshop G. M. Olson, S.
Sheppard and E. Salay. Norwood, NJAblex: 248-263.

Martin, EG. and Resnick, M. (1993). LEGO/Logo and Electronic Bricks: Creating a Sci-
enceland for ChildreAdvanced Educationdlechnologies for Mathematics and
ScienceD. L. Feguson. Berlin, Springeverlag.

Mayer, R.E. (1989)The Psychology of He Novices Learn Computer Programming.
Studying the Nwice ProgrammelE. Solavay and J. C. Spohrétlillsdale, NJ,
Lawrence Erlbaum\ssociates: 129-159.

McDaniel, R. (1999). BuildingVholeApplications Using Only Programming-by-Demon-
stration. Ph.DThesis. Carngie Mellon Unversity Computer Science Department
Pittshurgh, FA, 271pages.

Mclver, L.K. (2001). Syntactic and Semantic Issues in Introductory Programming Educa-
tion. Ph.D.Thesis. Monash Uwersity. School of Computer Science and Saftey
EngineeringAustralia,200 pages.

McQuire,A. and Eastman, C.M. (1993 mbiguity of Negation in Natural Language
QueriesProceedings of the Eighteemthnual InternationaACM SIGIR Confer
ence on Research andv@®pment in Information Retnval: 373.

Michard,A. (1982). “Graphical Presentation of Boolean Expressions in a Database Query
Language: Design Notes and ag@&mtomic Ealuation” Behaviour and Information

Technologyl(3): 279-288.

Miller, L.A. (1974). “Programming by Non-Programmeé&isternational Journal of Man-
Machine Studie$(2): 237-260.

Miller, L.A. (1981). “Natural Language Programming: Styles, Sgrage and Contrasts.
IBM Systems Journd#0(2): 184-215.

186 A Programming System for Children that is Designed for Usability

References

Miller, P, Pane, J., MeteiG. andvorthmann, S. (1994). “©ution of Novice Program-
ming ErvironmentsThe Structure Editors of Camgie Mellon Unversity” Interac-
tive Learning Emironments4(2): 140-158.

Modugno, F(1995). Extending End-User Programming Misual Shell with Program-
ming by Demonstration and Graphical Langu@gehniques. Ph.Olhesis. Carn-
egie Mellon Unversity Computer Science DepartmeRittsturgh, FA, 334 pages.

Modugno, F, CorbettA.T. and Myers, B.A. (1996). Eluating Program Representation
in aVisual Shell Empirical Studies of Programmers: Si¥tlorkshop W. D. Gray
and D.A. Boehm-Dais. Norwood, NJAblex Publishing Corporation: 131-146.

Mulholland, PandWatt, S.N.K. (2000). “Learning by Building Visual Modelling Lan-
guage for Psychology Studefit3ournal oVisual Languages and Computihty5):
481-504.

Myers, B.A. (1992). “Demonstrational IntadfesA Step Bgond Direct Manipulatiof.
IEEE ComputeP5(8): 61-73.

Nardi, B.A. (1993)A Small Matter of Programming: Persp&es on End User Comput-
ing. Cambridge, MAThe MIT Press.

Newell, A. and Card, S.K. (1985). “The Prospects for Psychological Science in Human-
Computer Interactioh Human-Computer Interactid(3): 209-242.

Nielsen, J. (1994). Heuristic Blwation.Usability Inspection Methodsl. Nielsen and R.
L. Mack. Nev York, Johnwiley & Sons: 25-62.

Pane, J.Fand Myers, B.A. (1996). Usability Issues in the Design ofitddoProgramming
Systems. Pittalrgh, A, Carngjie Mellon Unversity. School of Computer Science
Technical Repor€MU-CS-96-13285 pages.

Pane, J.Fand Myers, B.A. (2000)akular andTextual Methods for Selecting Objects
from a GroupProceedings dfL 2000: IEEE International Symposium ¥isual
LanguagesSeattleWA, IEEE Computer Society: 157-164.

Pane, J.F Ratanamahatana, C.A. and Myers, B.A. (2001). “Studying the Language and
Structure in Non-ProgrammeiSblutions to Programming Problefnternational
Journal of Human-Computer Studie4(2): 237-264.

A Programming System for Children that is Designed for Usability 187

References

Papert, S. (1980Mindstorms: Children, Computers, andaoful Ideas New York,
Basic Books.

Pattis, R.E., Roberts, J. and Stehlik, M. (19%&rel the RobotA Gentle Introduction to
theArt of ProgrammingNew York, JohnWiley & Sons.

Pea, R. (1986). “Language-Independent Conceptual “Bugs” wcBl&rogramming.
Journal of Educational Computing Resea?¢h).

Pictorius (1996)Prograph CPX User Guidelalifax, Nosa Scotia, Pictorius Incorporated,
http://www.pictorius.com/prograph.html.

RepenningA. (2000).AgentSheets®: an Interaed Simulation Emironment with End-
User Programmablégents Interaction 2000Tokyo, Japan.

RepenningA. and SumneiT. (1995). AgentsheetsA Medium for Creating Domain-Ori-
entedVisual LanguagesComputer28: 17-25.

Resnick, M. (1994)Turtles, Termites, andraffic Jams: Explorations in Massily Paral-
lel Microworlds Boston,The MIT Press.

Sammet, J.E. (1981)he Early History of COBOLHistory of Programming Languages
R. Wexelblat. Nev York, Academic Press.

Sherwod, B.A. (1988)The cT LanguageChampaigne, IL, Stipes Publishing Cormypan

Shneiderman, B. (1983). “Direct ManipulatignStep Bgond Programming Languagés.
IEEE Computed 6(8): 57-69.

Smith, D.C. (2000). “Building Person&bols by Programmin§ Communications of the
ACM 43(8): 92-95.

Smith, D.C., CypheA. and Spohrerd. (1994). “KidSim: ProgrammimggentsWithout a
Programming LanguageCommunications of thaCM 37(7): 54-67.

Solavay, E., BonarJ. and Ehrlich, K. (1989a). Cognii Stratgies and Looping Con-
structs/An Empirical StudyStudying the Nwice ProgrammelE. Solevay and J. C.
SpohrerHillsdale, NJ, Larrence Erlbaumssociates: 191-207.

188 A Programming System for Children that is Designed for Usability

References

Solovay, E. and Spohred.C., Eds. (1989bjtudying the Nwice Programmemillsdale,
NJ, Lawrence Erlbaurdssociates.

SpohrerJ.G. and Solway, E. (1986)Analyzing the High Frequegdugs in Nwice Pro-
grams.Empirical Studies of Programmetis. Solavay and S. lyergy. Washington,
DC, Ablex Publishing Corporation: 230-251.

Stein, L.A. (1999). “Challenging the Computational Metaphor: Implications far We
Think” Cybernetics and Syster838(6): 473-507.

Steinmetz, J. (2001). Computers and Squeak @sdaments for Learningsqueak: Open
Personal Computing and Multimedi. Guzdial and K. Rose, Prentice Hall: 453-
482.

Tanaka, J. (1999T.he Perfect Searchewsweek 134:71, September 27 1999.

TeitelmanW. and MasinterL. (1981). “The Interlisp Programming Hronment. Com-
puter14(4). 25-34.

Thimbleby H., Cocklurn,A. and Jones, S. (1992). HyperCaha: Object-Oriented Dis-
appointmentBuilding Interactve SystemsArchitectures andools P Gray and R.
Took. Nev York, SpringetVerlag: 35-55.

Thomas, J. and Gould, J. (197A)Psychological Study of Query by Exampiational
Computer Conferenc@naheim, CAAFIPS. 44: 439-445.

Turtle, H. (1994). Natural Language vs. Boolean Quellation:A Comparison of
Retrieval PerformanceProceedings of the SenteentiAnnual InternationadCM
SIGIR Conference on Research and/&epment in Information Retnal: 212-
220.

Wason, FC. (1959). “The Processing of Pog#tiand Negative Informatior’. Quarterly
Journal of Experimental Psychology.

Webain (2001). JeaCC -The Jaa Rarser Generatphttp://wwwwebgain.com/products/
metamata/jea_doc.html.

Weinbeg, G.M. (1971)The Psychology of Computer Programmiigw York, Van Nos-
trand Reinhold Compan

A Programming System for Children that is Designed for Usability 189

References

Wilcox, E. and Burnett, M. Programming a Single Digit LED orrs/3http://
www.cs.orst.edu/~lrnett/Forms3/LED.html.

Young, D. and Shneiderman, B. (1993).Graphical Filter/Flav Representation of Bool-
ean QueriesA Prototype Implementation and &wuation” Journal ofAmerican
Society for Information Scienc#4(6): 327-339.

This document contains only Chapter 1 of the thesis.
For citation, please efer to the full thesis document, which is\ailable at:
http://www .cs.cmu.edu/~pane/thesis

190 A Programming System for Children that is Designed for Usability

