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Abstract

 

A programming system is the user interface between the programmer and the computer. 

Programming is a notoriously difficult activity, and some of this difficulty can be attributed 

to the user interface as opposed to other factors. Historically, the designs of programming 

languages and tools have not emphasized usability. 

This thesis describes a new process for designing programming systems where HCI knowl-

edge, principles and methods play an important role in all design decisions. The process 

began with an exhaustive review of three decades of research and observations about the 

difficulties encountered by beginner programmers. This material was catalogued and orga-

nized for this project as well as for the benefit of other future language designers. Where 

questions remained unanswered, new studies were designed and conducted, to examine 

how beginners naturally think about and express problem solutions. These studies revealed 

ways that current popular programming languages fail to support the natural abilities of 

beginners.

All of this information was then used to design HANDS, a new programming system for 

children. HANDS is an event-based system featuring a concrete model for computation 

based on concepts that are familiar to non-programmers. HANDS provides queries and 

aggregate operations to match the way non-programmers express problem solutions, and 

includes domain-specific features to facilitate the creation of interactive animations and 

simulations. In user tests, children using the HANDS system performed significantly better 

than children using a version of the system that lacked several of these features. This is evi-

dence that the process described here had a positive impact on the design of HANDS, and 

could have a similar impact on other new programming language designs.

The contributions of this thesis include a survey of the knowledge about beginner program-

mers that is organized for programming system designers, empirical evidence about how 

non-programmers express problem solutions, the HANDS programming system for chil-

dren, a new model of computation that is concrete and based on familiar concepts, an eval-

uation of the effectiveness of key features of HANDS, and a case study of a new user-

centered design process for creating programming systems.
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CHAPTER 1

 

Introduction

 

Only a very small proportion of users can program their computers. However, most could 

benefit in some way from this powerful capability, whether to customize and interconnect 

their existing applications or to create new ones. As with writing, “the significance of pro-

gramming derives not only from the carefully crafted works of a few professionals, but also 

from the casual jottings of ordinary people” [diSessa 1986, p. 859]. For ordinary people, 

understandability, familiarity, ease of performing small tasks, and user interface are more 

important features in a programming system than technical objectives such as mathematical 

elegance, efficiency, verifiability, or uniformity. 

Many of the people who try to learn to program are quickly discouraged because it is very 

difficult. In fact, it is even challenging for more experienced people who have received 

formal training. Why is programming so difficult? Part of the problem is that it requires 

problem solving skills and great precision, but this does not fully explain the difficulty. 

Even when a person can envision a viable detailed solution to a programming problem, it 

is often very hard to express the solution correctly in the form required by the computer. 

This is a user-interface problem that has long been recognized but neglected. 
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1.1 Historical Context

 

In 1971, Gerald Weinberg published 

 

The Psychology of Computer Programming

 

, with the 

stated goal to trigger a new field that studies computer programming as a human activity 

[Weinberg 1971]. At the time, there was little scientific literature about the human aspect 

of programming, and most of it appeared in technical reports and other obscure publica-

tions. The field began to grow quickly after Allen Newell addressed the third ACM 

 

CHI 

Conference on Human Factors in Computing Systems

 

, and later published his comments in 

an article with Stuart Card:

Millions for compilers, but hardly a penny for understanding 
human programming language use. Now, programming lan-
guages are obviously symmetrical, the computer on one side, 
the programmer on the other. In an appropriate science of 
computer languages, one would expect that half the effort 
would be on the computer side, understanding how to trans-
late the languages into executable form, and half on the 
human side, understanding how to design languages that are 
easy or productive to use. Yet we do not even have an enu-
meration of all of the psychological functions programming 
languages serve for the user. Of course, there is lots of pro-
gramming language 

 

design

 

, but it comes from computer sci-
entists. And though technical papers on languages contain 
many appeals to ease of use and learning, they patently con-
tain almost no psychological evidence nor any appeal to psy-
chological science. [Newell 1985, p. 212]

Soon two workshop series were started, which have become focal points for research in the 

usability of programming languages: the 

 

Psychology of Programming Interest Group

 

 

(PPIG) explores the cognitive aspects of computer programming; and the 

 

Empirical Studies 

of Programmers

 

 (ESP) group focuses on empirical studies of beginners and experts. 

Over the past three decades, many researchers have worked to understand the cognitive 

demands of programming and the sources of difficulty in existing programming languages 

and tools. In addition to the proceedings of the PPIG and ESP workshop series, relevant 

work has appeared in the 

 

International Journal of Human-Computer Studies

 

 (formerly 

 

International Journal of Man-Machine Studies

 

), the proceedings of the ACM 

 

CHI

 

 confer-

ence and the IEEE 

 

Human-Centric Computing

 

 (formerly 

 

Visual Languages

 

) conference, 
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and the books 

 

Studying the Novice Programmer

 

 [Soloway 1989b], 

 

Psychology of Pro-

gramming

 

 [Hoc 1990a], and 

 

Software Design: Cognitive Aspects

 

 [Détienne 2001]. 

 

1.2 A User Centered Design Process for Programming Systems

 

It is disappointing that the knowledge gathered over the past thirty years has had so little 

influence on the designs of new programming systems (in this document, the term pro-

gramming system is used to encompass the programming language as well as the tools for 

viewing, editing, debugging and running programs). In order to help remedy this, I have 

organized the prior work that studied beginner programmers so that it might be readily 

included among the guidelines and strategies that are used by future programming system 

designers. Generally, language designers have focused on technical goals for their systems, 

such as to build systems that are scalable, efficient, reusable, provably correct, or that have 

mathematical elegance. When they face a design decision that is not determined by these 

criteria, they usually choose a solution that is similar to existing languages or one that 

appeals to their intuition. Usability has rarely been adopted as a formal objective.

I believe that usability should always be included among the criteria that are considered 

during the design of programming systems. Depending on the constraints of a particular 

project and target audience, usability may be given more or less weight. However, it is 

always worth considering for at least those decisions that are not already determined by 

other design criteria

In this thesis, I exemplify a new design process for programming systems, where usability 

is treated as a first-class objective:

1.

 

Identify the target audience

 

 and the domain, that is, the group of people who will be 

using the system and the kinds of problems they will be working on.

2.

 

Understand the target audience

 

, both the problems they encounter and the existing rec-

ommendations on how to support their work. This includes an awareness of general 

HCI principles as well as prior work in the psychology of programming and empirical 

studies. When issues or questions arise that are not answered by the prior work, conduct 

new studies to examine them.

3.

 

Design the new system

 

 based on this information.
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4.

 

Evaluate the system

 

 to measure its success, and understand any new problems that the 

users have. If necessary, redesign the system based on this evaluation, and then re-eval-

uate it.

In this design process, all of the prior knowledge about the human aspects of programming 

are considered, and the strategy for addressing any unanswered questions is to conduct user 

studies to obtain design guidance and to assess prototypes. For my new programming 

system for children, I adopted an extreme position by giving usability precedence over 

other objectives. 

While my focus has been on beginner programmers, I believe this approach also applies to 

experts, and that it can have positive impacts on training and productivity as well as the reli-

ability of professional software systems. Improving the programming systems used by 

experts will also affect beginners, because although these systems may not be the best 

choices for learning to program, they are often chosen because they are widely available 

and familiar to mentors. Everyone would benefit if these programming languages and tools 

were more usable.

 

1.3 Motivation

 

The goal of this thesis is to 

 

enable

 

 more beginners to learn to program for their personal 

purposes, with minimal training. There is no explicit goal to teach any particular computer 

science concepts, such as recursion, unless the concept is essential to the users achieving 

their goals. There is also no requirement for the new programming language produced by 

this work to match existing programming languages. Ideally, the new system will be gen-

eral and powerful enough that many people will achieve their objectives without having to 

move to other new languages. Hopefully, the need to learn some of the harder computer 

science concepts can be deferred or eliminated. For those who do move on to other lan-

guages or even to become computer scientists, their early success with this first language 

should ease their difficulties in learning the harder computer science concepts. 

 

1.4 Thesis Statement

 

The thesis statement for this work is:
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this user-centered design process, incorporating principles 
from human-computer interaction, psychology of program-
ming, and empirical studies, will result in a unique program-
ming system that is easier to learn and use than more 
conventional programming systems.

 

1.5 Target Audience and Domain

 

The target audience for my new programming system is children in fifth grade (about ten 

years old) or older. I chose to build a system for children because they often have an interest 

in learning how to program, but can be quickly discouraged when they try. Their goals are 

creative and ambitious – they would like to make programs that are similar to the applica-

tions they use, such as games and simulations. These applications are graphically rich and 

highly interactive, unlike the first programs they are likely to create in many professional 

programming systems, such as to display “hello world” on the screen. My goal is to provide 

an easy entry into creating these interactive graphical programs. However, to the extent 

possible, I also tried to create a general purpose language that scales well, so that it is not 

inherently limited to creating toy programs. 

 

1.6 Understanding the Target Audience

 

In addition to general design principles that are applicable to all users, there is a wealth of 

information available about how beginner programmers work and the problems they 

encounter. This section summarizes the prior work and briefly describes the new studies I 

conducted to examine additional questions.

 

1.6.1 General Design Principles

 

The field of 

 

Human Computer Interaction

 

 (HCI) has general principles and heuristics that 

can be applied to programming system design [Nielsen 1994]: 

• simple and natural dialog – user interfaces should be simplified, and should match the 

user’s task in as natural a way as possible, such that the mapping between computer 

concepts and user concepts becomes straightforward.

• speak the user’s language – the terminology in user interfaces should be based on the 

user’s language, instead of using system-oriented terms or attaching non-standard 

meanings to familiar words.
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• minimize user memory load – the system should take over the burden of memory from 

the user.

• consistency – the same command or action should always have the same effect.

• feedback – the system should continuously inform the user about what it is doing and 

how it is interpreting the user’s input.

• clearly marked exits – the system should offer the user an easy way out of as many sit-

uations as possible, including ways to undo.

• shortcuts – the system should make it possible for experienced users to perform fre-

quently used operations quickly.

• good error messages – the system should report errors politely in clear language, avoid 

obscure codes, use precise rather than vague or general explanations, and include con-

structive help for solving the problem.

• prevent errors – where possible, the user interface should be structured to avoid error 

situations.

• help and documentation – the help system and documentation should provide a quick 

way for users to find task-specific information when they are having a problem.

Many of these principles are routinely violated by programming systems – several exam-

ples are presented in Chapter 2. 

When designing and evaluating programming systems, it is also useful to consider the more 

specific evaluation criteria in the 

 

Cognitive Dimensions of Notations

 

 framework (Cognitive 

Dimensions, for short) [Blackwell 2000, Green 1996]:

• viscosity – the system should not resist change; it should not require many user actions 

to accomplish one small goal.

• visibility – the information needed by the programmer at any particular time should be 

visible or very easy to access.

• premature commitment – the system should not force the user to go about the job in a 

particular order, or make a decision before the needed information is available.

• hidden dependencies – important links between entities should be visible.
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• role expressiveness – the purpose of an entity should be readily apparent.

• error proneness – the notation should protect against slips and errors.

• closeness of mapping – the system’s operations should closely match the way users 

think about problem solutions.

• secondary notation – the system should allow the programmer to communicate addi-

tional information with comments, typography, layout, etc.

• progressive evaluation – the system should permit users to test partial programs.

• diffuseness – small goals should not require extraordinarily long solutions or large 

amounts of screen space.

• provisionality – the system should allow the user to sketch out uncertain parts of their 

solution.

• hard mental operations – none of the system’s operations should require great mental 

effort to use.

• consistency – similar notations should mean similar things, and vice versa.

• abstraction management – the system should provide a way to define new facilities or 

terms that allow the user to express ideas more clearly or succinctly, but it should not 

force users to use this capability right from the start.

These factors are sometimes in conflict, so improving the system along one dimension can 

result in reduced performance on another. Tradeoffs are necessary, and in making these 

tradeoffs it is useful to consider cognitive models and observations from empirical studies. 

 

1.6.2 Observations about Existing Programming Languages

 

The principles of 

 

simple and natural dialog, speak the user’s language 

 

and 

 

closeness of 

mapping

 

 are reinforced by cognitive models that define programming as a process where 

the user translates a mental plan into one that is compatible with the computer [Hoc 1990b]. 

The language should minimize the difficulty of this translation by providing operators that 

match those in the plan, including any that may be specific to the topic or domain of the 

program. “The closer the programming world is to the problem world, the easier the prob-

lem-solving ought to be.... Conventional textual languages are a long way from that goal” 
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[Green 1996, p. 146]. Hix & Hartson describe the general usability guideline to 

 

use cogni-

tive directness

 

 [Hix 1993, p. 38] to “minimize the mental transformations that a user must 

make. Even small cognitive transformations by a user take effort away from the intended 

task.” If the language does not provide these high-level operators, programmers have to 

assemble lower-level primitives to achieve their goals. This synthesis is one of the greatest 

cognitive barriers to programming [Lewis 1987].

Programmers are often required to think about algorithms and data in ways that are very 

different than the ways they already think about them in other contexts. For example, a typ-

ical C program to compute the sum of a list of numbers includes three kinds of parentheses 

and three kinds of assignment operators in five lines of code:

 

sum = 0;
for (i=0; i<numItems; i++) {

sum += items[i];
}
return sum;

 

In contrast, this can be done in a spreadsheet with a single line of code using the 

 

sum

 

 oper-

ator [Green 1996]. The mismatch between the way a programmer thinks about a solution 

and the way it must be expressed in the programming language makes it more difficult not 

only for beginners to learn how to program, but also for people to carry out their program-

ming tasks even after they become more experienced. One of the most common bugs 

among professional programmers using C and C++ is the accidental use of “=” (assign-

ment) instead of “==” (equality test). This mistake is easy to make and difficult to find, not 

only because of typographic similarity, but also because “=” operator does indeed mean 

equality in other contexts such as mathematics.

Soloway, Bonar & Erlich [Soloway 1989a] found that the looping control structures pro-

vided by modern languages do not match the natural strategies that most people bring to 

the programming task. Furthermore, when novices are stumped they try to transfer their 

knowledge of natural language to the programming task. This often results in errors 

because the programming language defines these constructs in an incompatible way [Bonar 

1989]. For example, 

 

then

 

 is interpreted as 

 

afterwards

 

 instead of 

 

in these conditions

 

. 
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1.6.3 Naturalness

 

There are two ways to improve closeness of mapping. One is to teach people to think more 

like computers; the other is to make the programming system’s operations match how users 

think. The latter approach is preferred in this thesis. A primary goal of my programming 

system is to support the 

 

natural

 

 ways that non-programmers think about problem solutions, 

instead of making them learn new and often unnatural ways to accomplish their objectives. 

In this context, natural means 

 

expected or accepted

 

. If people have a viable approach to 

solving problems, the ideal programming system would support that solution directly, 

without requiring the programmer to learn anything new or perform additional work in 

translating their ideas into program code. 

By this definition, naturalness is not universal for all humans. People from different back-

grounds and cultures, or from different points in history, are likely to bring different expec-

tations and methods to the programming task. Therefore, a programming system that is 

designed to be natural for a particular target audience is unlikely to be universally optimal. 

This is why identifying the target audience is an intrinsic part of the design process, and 

why the process itself is important. It will have to be applied over and over again, in order 

to best support the particular characteristics of the people who will use each new program-

ming system.

Striving for naturalness does not necessarily imply that the programming language should 

use natural language. Programming languages that have adopted natural-language-like syn-

taxes, such as Cobol [Sammet 1981] and HyperTalk [Goodman 1987], still have many 

usability problems. For example, HyperTalk often violates the principle of consistency 

[Thimbleby 1992]. There are also many ambiguities in natural language that are resolved 

by humans through shared context and cooperative conversation [Grice 1975]. 

Novices attempt to enter into a human-like discourse with the computer, but programming 

languages systematically violate human conversational maxims because the computer 

cannot infer from context or enter into a clarification dialog [Pea 1986]. The use of natural 

language may compound this problem by making it more difficult for the user to under-

stand the limits of the computer’s intelligence [Nardi 1993]. 
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However, these arguments do not imply that the algorithms and data structures should not 

be close to the ways people think about the problem. In fact, leveraging users’ natural-lan-

guage-like knowledge in a more formalized syntax can be an effective strategy for design-

ing end-user-programming languages [Bruckman 1999]. 

There are additional motivations for why a more natural programming language might be 

better. A programming language is a type of user interface, and user interfaces in general 

are recommended to be 

 

natural

 

 so they are easier to learn and use, and will result in fewer 

errors. Naturalness is closely related to the concept of directness which, as part of 

 

direct 

manipulation

 

, is a key principle in making user interfaces easier to use. Hutchins, Hollan 

& Norman describe 

 

directness

 

 as the distance between one’s goals and the actions required 

by the system to achieve those goals [Hutchins 1986]. Reducing this distance makes sys-

tems more direct, and therefore easier to learn. User interface designers and researchers 

have been promoting directness at least since Shneiderman identified the concept [Shnei-

derman 1983], but it has not been a consideration in most programming language designs.

 

1.6.4 Studies of Naturalness in Problem Solving

 

This thesis presents two studies examining the language and structure that children and 

adults naturally use before they have been exposed to programming (Chapter 3). In these 

studies, I gave programming tasks to non-programmers and they solved these problems by 

writing and sketching their answers on paper. The tasks covered a broad set of essential pro-

gramming techniques and concepts, such as control structures, storage and manipulation of 

data, arithmetic, Boolean logic, searching and sorting, animation, interactions among 

objects, etc. In posing the problems, I was careful to minimize the risk that my materials 

would influence the answers, so I used pictures and very terse captions.

Some observations from these studies were:

• An event-based or rule-based structure was often used, where actions were taken in 

response to events. For example, “when pacman loses all his lives, it’s game over.”

• Aggregate operators (acting on a set of objects all at once) were used much more often 

than iterating through the set and acting on the objects individually. For example, 

“Move everyone below the 5th place down by one.”
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• Participants did not construct complex data structures and traverse them, but instead 

performed content-based queries to obtain the necessary data when needed. For exam-

ple, instead of maintaining a list of monsters and iterating through the list checking the 

color of each item, they would say “all of the blue monsters.” 

• A natural language style was used for arithmetic expressions. For example, “add 100 to 

score.”

• Objects were expected to automatically remember their state (such as motion), and the 

participants only mentioned changes in this state. For example, “if pacman hits a wall, 

he stops.”

• Operations were more consistent with list data structures, rather than arrays. For exam-

ple, the participants did not create space before inserting a new object into the middle 

of a list.

• Participants rarely used Boolean expressions, but when they did they were likely to 

make errors. That is, their expressions were not correct if interpreted according to the 

rules of Boolean logic in most programming languages.

• Participants often drew pictures to sketch out the layout of the program, but resorted to 

text to describe actions and behaviors.

 

1.6.5 Study of Methods to Specify Queries

 

Because content-based queries were prevalent in non-programmers’ problem solutions, I 

began to explore how this might be supported in a programming language. Queries are usu-

ally specified with Boolean expressions, and the accurate formulation of Boolean expres-

sions has been a notorious problem in programming languages, as well as other areas such 

as database query tools [Hildreth 1988, Hoc 1989]. In reviewing prior research I found that 

there are few prescriptions for how to solve this problem effectively. For example, prior 

work suggests avoiding the use of the Boolean keywords 

 

AND

 

, 

 

OR

 

, and 

 

NOT 

 

[Greene 

1990, McQuire 1995, Michard 1982], but does not recommend a suitable replacement 

query language. 

Therefore I conducted a new study to examine the ways untrained children and adults nat-

urally express and interpret queries, and to test a new tabular query form that I designed 
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called 

 

match forms

 

 (shown in Figure 1-1). This study confirmed that relying on the Boolean 

keywords, as well as parentheses for grouping, would result in poor usability. Textual alter-

natives that avoided the Boolean keywords were not reliably better. However, the match 

forms were successful.

Each match form contains a vertical list of slots. Conjunction is specified by placing terms 

into these slots, one term per slot. Negation is performed by prefacing a term with the 

 

NOT

 

 

operator, and disjunction is specified by placing additional match forms adjacent to the first 

one. This design avoids the need to name the 

 

AND

 

 and 

 

OR

 

 operators, provides a clear dis-

tinction between conjunction and disjunction, and makes grouping explicit. Match forms 

are suitable for incorporation into programming systems. When compared with textual 

Boolean expressions, users performed significantly better when they expressed their que-

ries using match forms. When interpreting already-written queries, performance was about 

equal using either language. Chapter 4 contains full details about match forms and this 

study, as well as an application of this work to the search interface for the online 

 

HCI Bib-

liography

 

.

 

1.6.6 Model of Computation

 

One of the biggest challenges for new programmers is to gain an accurate understanding of 

how computation takes place. Traditionally, programming is described to beginners in 

completely unfamiliar terms, often based on the von Neumann model, which has no real-

world counterpart [du Boulay 1989a, du Boulay 1989b]. Beginners must learn, for exam-

ple, that the program follows special rules of control flow for procedure calls and returns. 

There are complex rules that govern the lifetimes of variables and their scopes. Variables 

 

Figure 1-1. 

 

Match forms expressing the query: (blue and not square) or (circle and not green)
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may not exist at all when the program is not running, and during execution they are usually 

invisible, forcing the programmer to use print statements or debuggers to inspect them. This 

violates the principle of visibility, and contributes to a general problem of memory over-

load [Anderson 1985, Davies 1993]. 

Usability could be enhanced by providing a different model of computation that uses con-

crete and familiar terms [Mayer 1989, Smith 1994]. Using a different model of computation 

can have broad implications beyond beginners, because the model influences, and perhaps 

limits, how experienced programmers think about and describe computation [Stein 1999]. 

Section 1.7.1 introduces the new model of computation I invented to address this problem.

 

1.6.7 Visual vs. Textual

 

In visual languages, graphics replace some or all of the text in specifying programs. Propo-

nents of visual programming languages often argue that reducing or eliminating the text in 

programming will improve usability [Smith 1994]. However, much of the underlying ratio-

nale for this expectation is suspect [Blackwell 1996]. User studies have shown mixed 

results on the superiority of visual languages over text (e.g. [Green 1992]), and the advan-

tage of visual languages tends to diminish on larger tasks. It is useful to note that one of the 

most successful end-user programming systems to date is the spreadsheet, which is mostly 

textual [Nardi 1993].

My new programming system supports the hybrid graphical-textual approach used by the 

participants in my studies, and relies on the programming environment to alleviate some of 

the difficulties of textual languages. For example, during program entry, context-sensitive 

menus like those in Microsoft’s Visual Studio can make it easier to know what choices are 

available and to help the user to enter the program correctly. This support could be aug-

mented with a drag-and-drop syntax-directed editor, as seen in Squeak’s eToys interface 

[Steinmetz 2001] and other systems. The system can also provide visual representations for 

textual elements that are difficult, such as the match forms mentioned in Section 1.6.5. 

 

1.7 The HANDS Programming System Design

 

All of these observations have influenced the design of my new programming system, 

which is called HANDS (Human-centered Advances for the Novice Development of Soft-
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ware). HANDS uses an event-based language that features a new concrete model for com-

putation, provides queries and aggregate operators that match the way non-programmers 

express problem solutions, has high-visibility of program data, and includes domain-spe-

cific features for the creation of interactive animations and simulations. The HANDS 

system is detailed in Chapter 5.

 

1.7.1 Computational Model

 

In HANDS, the computation is represented as an agent named Handy, sitting at a table 

manipulating a set of cards (see Figure 1-2). All of the data in the system is stored on these 

cards, which are global, persistent and visible on the table. Each card has a unique name, 

and an unlimited set of name-value pairs, called properties. The program itself is stored in 

Handy’s 

 

thought bubble

 

. To emphasize the limited intelligence of the system, Handy is por-

trayed as an animal – like a dog that knows a few commands – instead of a person or a robot 

that could be interpreted as being very intelligent.

 

Figure 1-2. 

 

 The HANDS system portrays the components of a program on a round table. All data is stored 
on cards, and the programmer inserts code into Handy’s thought bubble at the upper left corner. When the 
play button is pressed, Handy begins responding to events by manipulating cards according to the 
instructions in the thought bubble. This is described in more detail in Chapter 5.
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1.7.2 Programming Style and Model of Execution

 

HANDS is event-based, the programming style that most closely matches the problem 

solutions in my studies. A program is a collection of event handlers that are automatically 

called by the system when a matching event occurs. Inside an event handler, the program-

mer inserts the code Handy should execute in response to the event. 

 

1.7.3 Aggregate Operations

 

In my studies, I observed that the participants used aggregate operators, manipulating 

whole sets of objects in one statement rather than iterating and acting on them individually. 

Many languages force users to perform iteration in situations where aggregate operations 

could accomplish the task more easily [Miller 1981]. Requiring users to translate a high-

level aggregate operation into a lower-level iterative process violates the principle of 

 

close-

ness of mapping

 

. 

HANDS has full support for aggregate operations. All operators can accept lists as well as 

singletons as operands, or even one of each. For example,

•

 

1 + 1

 

 evaluates to 

 

2

 

•

 

1 + (1,2,3)

 

 evaluates to 

 

2,3,4

 

•

 

(1,2,3) + 1

 

 evaluates to 

 

2,3,4

 

•

 

(1,2,3) + (2,3,4)

 

 evaluates to 

 

3,5,7

 

1.7.4 Queries

 

In my studies, I observed that users do not maintain and traverse data structures. Instead, 

they perform queries to assemble lists of objects on demand. For example, they say “all of 

the blue monsters.” HANDS provides a query mechanism to support this. The query mech-

anism searches all of the cards for the ones matching the programmer’s criteria.

Queries begin with the word 

 

all

 

. If a query contains a single value, it returns all of the cards 

that have that value in any property. Figure 1-3 contains cards representing three flowers 

and a bee to help illustrate the following queries. 

•

 

all flowers

 

 evaluates to 

 

orchid, rose, tulip
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•

 

all bees

 

 evaluates to 

 

bumble

 

•

 

all snakes

 

 evaluates to the empty list

HANDS permits more complex queries to be specified with traditional Boolean expres-

sions, however the intention is to eventually incorporate match forms into the system as an 

option for specifying and displaying queries. 

Queries and aggregate operations work in tandem to permit the programmer to concisely 

express actions that would require iteration in most languages. For example,

 

• set the nectar of all flowers to 0

 

1.7.5 Domain-Specific Support

 

HANDS has domain-specific features that enable programmers to easily create highly-

interactive graphical programs. For example, the system’s suite of events directly supports 

this class of programs. The system automatically detects collisions among objects and gen-

erates events to report them to the programmer. It also generates events in response to input 

from the user via the keyboard and mouse. It is easy to create graphical objects and text on 

the screen, and animation can be accomplished without any programming. 

 

1.8 Evaluation

 

To examine the effectiveness of three key features of HANDS: 

 

queries, aggregate opera-

tions, and data visibility

 

, I conducted a study comparing the system with a limited version 

that lacks these features. In the limited version, programmers could achieve the same 

results but had to use more traditional programming techniques. Fifth-grade children were 

 

Figure 1-3. 

 

When the system evaluates the query 

 

all flowers

 

 it returns 

 

rose, tulip, orchid
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able to learn the HANDS system during a three-hour session, and then use it to solve pro-

gramming problems. Children using the full-featured HANDS system performed signifi-

cantly better than their peers who used the reduced-feature version. This is evidence that 

this set of features improves usability over the typical set of features in programming sys-

tems.

In a separate informal study, a high-school student compared hands with Stagecast, a com-

mercial programming environment for children [Earhart 1999]. He implemented a game in 

both systems, and concluded that HANDS was easier to use, enabled him to implement 

more features, and required fewer lines of code. In addition, several more experienced pro-

grammers have used HANDS to implement a broad variety of programs to explore its range 

of capabilities.

Evaluation of the HANDS system is detailed in Chapter 6.

 

1.9 Contributions

 

The contributions of this thesis are:

• a case study of a new 

 

design process

 

 for creating programming systems, where usabil-

ity is a first class objective;

• the 

 

HANDS programming system

 

 for children, which has a unique set of features due to 

its user-centered design, several of which were demonstrated to be more usable than 

those found in typical programming systems;

• a new 

 

model of computation

 

, or way of thinking about programs, that is concrete and 

based on familiar concepts, unlike the traditional Turing machine or von Neumann 

machine models;

• a general-purpose 

 

programming language

 

 that offers database-style access to the pro-

gram’s data, and in which all operators can be applied to singletons and lists;

•

 

match forms

 

, a tabular method for expressing queries that was compared to textual 

expressions and shown to improve beginners’ performance;

• a new 

 

query interface 

 

for the

 

 

 

HCI Bibliography (www.hcibib.org), based on match 

forms, which reduces user errors in comparison to the old interface;
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•

 

empirical evidence 

 

about how non-programmers express problem solutions, which can 

be used to help designers generate and select programming system features that provide 

a close mapping between those problem solutions and their expression in program 

code;

•

 

empirical evidence 

 

characterizing the kinds of errors made by inexperienced users of 

textual Boolean expressions;

•

 

a user study

 

 demonstrating the effectiveness of queries, aggregate operations, and high-

visibility of data, in comparison to the typical features sets of programming systems; 

and,

• a 

 

broad survey

 

 of the prior work on beginner programmers, organized in a form that can 

be used by other programming system designers (appears in Appendix C).

 

1.10 Overview of Thesis

 

The remainder of this thesis is organized as follows: Chapter 2 describes the prior empirical 

work on beginner programmers as well as other programming systems for beginners and 

children; Chapter 3 describes the first two studies examining the language and structure in 

non-programmers solutions to programming problems; Chapter 4 describes the third study, 

examining methods for specifying queries, and provides details about match forms; Chap-

ter 5 details the design of the HANDS system; Chapter 6 describes a fourth study, to eval-

uate features of HANDS, as well as other less formal evaluations; Chapter 7 discusses the 

implications of this work and some ideas for future work; and Chapter 8 gives some con-

cluding remarks. 

Supplemental materials are contained in appendices. Appendix A contains a formal speci-

fication of the HANDS language syntax; Appendix B contains some example programs 

implemented in HANDS; Appendix C contains the full text of my technical report survey-

ing usability issues in programming systems for beginners; Appendix D contains the mate-

rials used in the first study; Appendix E contains the materials used in the second study; 

Appendix F contains the materials used in the third study; and Appendix G contains the 

materials used in the fourth study.
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This document contains only Chapter 1 of the thesis. 
For citation, please refer to the full thesis document, which is available at:

http://www.cs.cmu.edu/~pane/thesis
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