

A Programming System for Children
that is Designed for Usability (Chapter 1)

This document contains only Chapter 1 of the thesis.
For citation, please refer to the full thesis document, which is available at:

http://www.cs.cmu.edu/~pane/thesis

John F. Pane
CMU-CS-02-127

May 3, 2002

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:

Brad A. Myers (co-chair)
David Garlan (co-chair)

Albert Corbett
James Morris

Clayton Lewis, University of Colorado

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Also appears as: CMU-HCII-02-101

Copyright © 2002 John F. Pane

This research was sponsored in part by the National Science Foundation under Grant No. IRI-9900452. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily
reflect those of the National Science Foundation.

Keywords:

 Natural Programming, HANDS, End-User Programming, Psychology of Pro-

gramming, Empirical Studies of Programmers, Educational Software, Children, User Inter-

face Design, Programming Environments, Programming Language Design, Usability,

Human-Computer Interaction.

Abstract

A programming system is the user interface between the programmer and the computer.

Programming is a notoriously difficult activity, and some of this difficulty can be attributed

to the user interface as opposed to other factors. Historically, the designs of programming

languages and tools have not emphasized usability.

This thesis describes a new process for designing programming systems where HCI knowl-

edge, principles and methods play an important role in all design decisions. The process

began with an exhaustive review of three decades of research and observations about the

difficulties encountered by beginner programmers. This material was catalogued and orga-

nized for this project as well as for the benefit of other future language designers. Where

questions remained unanswered, new studies were designed and conducted, to examine

how beginners naturally think about and express problem solutions. These studies revealed

ways that current popular programming languages fail to support the natural abilities of

beginners.

All of this information was then used to design HANDS, a new programming system for

children. HANDS is an event-based system featuring a concrete model for computation

based on concepts that are familiar to non-programmers. HANDS provides queries and

aggregate operations to match the way non-programmers express problem solutions, and

includes domain-specific features to facilitate the creation of interactive animations and

simulations. In user tests, children using the HANDS system performed significantly better

than children using a version of the system that lacked several of these features. This is evi-

dence that the process described here had a positive impact on the design of HANDS, and

could have a similar impact on other new programming language designs.

The contributions of this thesis include a survey of the knowledge about beginner program-

mers that is organized for programming system designers, empirical evidence about how

non-programmers express problem solutions, the HANDS programming system for chil-

dren, a new model of computation that is concrete and based on familiar concepts, an eval-

uation of the effectiveness of key features of HANDS, and a case study of a new user-

centered design process for creating programming systems.

.

Acknowledgements

I would like to extend my heartfelt appreciation to Brad Myers for his insight and guidance

throughout my Ph.D. work. I am very grateful for the many hours that he spent discussing

and critiquing my work.

I am also very thankful for the feedback and support of my co-advisor, David Garlan, and

the other members of my committee: Jim Morris, Clayton Lewis and Albert Corbett. Albert

was especially generous in the time he spent helping me to design the user studies and ana-

lyze the results.

Many other faculty at CMU and elsewhere gave me valuable feedback and suggestions

along the way. In particular, I would like to thank Bonnie John, Ken Koedinger, Wayne

Gray, Margaret Burnett, Alan Blackwell, and Thomas Green.

I am especially grateful to Bonnie John, Dana Scott and Phil Miller, who were influential

in my decision to become a Ph.D. student, and who helped me gain admission to the pro-

gram.

I would like to thank the undergraduate and master’s students who helped me develop the

ideas in HANDS and who worked on the user studies: Leah Miller, Chotirat “Ann” Ratan-

amahatana, John Chang, Gabe Brisson, Luis Cota, and Ruben Carbonnell. Thanks to Joon-

hwan Lee for creating the graphics in the HANDS system. Thanks to Rob Miller for

contributing his code for multi-level undo in the text editor.

Many thanks to Bernita Myers for acting as liaison to the East Hills Elementary school.

Thanks to Mr. Niklos, the principal, as well as the teachers who allowed us to work in their

classrooms: Carol Beavers and John Meighan. Also, thanks to Laurie Heinreicher at Win-

chester-Thurston school. Thanks to Michael Pane for his assistance in pilot testing the user

study evaluating HANDS, and Melody Mostow for doing this and also starring in the

HANDS video. Thanks to Ryan and Reid Myers, who helped us recruit volunteers for one

of the studies. And, special thanks to Ryan for his insightful comparison of HANDS with

Stagecast. And of course, thanks to all of the participants in my studies.

Thanks to Gary Perlman for working with me to develop and evaluate the search interface

for the HCI Bibliography.

Thanks to many additional friends and fellow students who have helped me in various

ways, especially Neil Heffernan, Chuck Rosenberg, Laurie Hiyakumoto, Herb Derby,

Eugene Ng, Adam Berger, Matt Zekauskas, Maria Ebling, Chris Long, and David Eck-

hardt. A special thanks to Drew Morgan whose friendship and counsel was essential to my

ability to make it through this project.

Especially, I would like to express my gratitude to my family for their support and encour-

agement. Most of all, thanks to my wife Barbara, who has given me her patient loving sup-

port throughout. Without this I may have never made it. I hope the rest of our lives will give

me sufficient opportunity to reciprocate. Finally, thanks to Lorenzo, our next big project

and one of the compelling motivations to finish this one.

A Programming System for Children that is Designed for Usability

vii

Contents

Abstract

iii

Acknowledgements

v

CHAPTER 1

Introduction

1

Historical Context

2

A User Centered Design Process for Programming Systems

3

Motivation

4

Thesis Statement

4

Target Audience and Domain

5

Understanding the Target Audience

5

General Design Principles

5

Observations about Existing Programming Languages

7

Naturalness

9

Studies of Naturalness in Problem Solving

10

Study of Methods to Specify Queries

11

Model of Computation

12

Visual vs. Textual

13

Contents

viii

A Programming System for Children that is Designed for Usability

The HANDS Programming System Design

13

Computational Model

14

Programming Style and Model of Execution

15

Aggregate Operations

15

Queries

15

Domain-Specific Support

16

Evaluation

16

Contributions

17

Overview of Thesis

18

CHAPTER 2

Related Work

19

Usability Issues in Programming Systems for Beginners

19

Systems for Beginners and Children

19

The Logo Family

19

Boxer

20

ToonTalk

20

AgentSheets

21

Stagecast

21

SmallTalk and eToys

23

Alice

24

Rehearsal World

25

Karel the Robot

25

GRAIL

26

HyperTalk

26

AppleScript

26

SK8Script

26

Chart ‘n’ Art

27

cT

27

LabView

27

Forms/3

27

Visual Basic

27

Java and C#

28

MacGnome

28

Programming by Demonstration

29

Hank

29

A Programming System for Children that is Designed for Usability

ix

Contents

CHAPTER 3

The Language and Structure in Problem Solutions Written
by Non-Programmers

31

Comparison to Lance Miller’s Studies

32

Overview of the Studies

33

Study One

34

Participants

34

Materials

35

Procedure

36

Content Analysis

36

Results

37

Overall Structure

40

Keywords

41

Control Structures

42

Computation

44

Discussion

46

Study Two

46

Participants

46

Materials

47

Procedure

48

Content Analysis

48

Results

49

Keywords

49

Control Structures

52

Computation

53

Discussion of Results

58

Programming Style

58

Summary of These Studies

65

CHAPTER 4

Methods for Expressing Queries

67

Overview

67

Prior work on Boolean Queries

70

Design alternatives for Boolean queries

70

Tabular query forms

71

Hypotheses

72

AND vs. nested IF

72

NOT vs. Unless

72

Contents

x

A Programming System for Children that is Designed for Usability

Location of Unless

72

Context-dependent interpretation of AND

73

Verbose AND vs. OR

73

Operator precedence of NOT

73

Parentheses for expression grouping

74

Tabular vs. textual

74

Method

74

Participants

75

Materials

76

Procedure

76

Results

78

Discussion

80

Textual query variations

81

Match forms vs. text

82

Summary

83

Application of Results

84

CHAPTER 5

The HANDS System

87

Motivating Factors in the HANDS Design

87

Representation of the Program

89

Cards for Data Storage

89

Computation is Performed by Handy

94

Programming Style and Model of Execution in HANDS

96

Structure of Event Handlers

97

Event Dispatch

97

The Events

98

Event Patterns

99

Event Cards

101

Data Types

101

Numeric Values and Calculations

102

Language Syntax

103

Natural-Language Style

103

Plurals

103

Control Structure Terminators

104

Statement Terminators

104

Parentheses Are Required to Indicate Precedence Explicitly

104

List Syntax

105

A Programming System for Children that is Designed for Usability

xi

Contents

Consistency Between Values on Cards and in Program Code

105

Comments, Indenting, and White Space

105

Choices for Keywords and Special Identifiers

106

Statements

106

Operations on Cards

107

Operations on Card Properties

107

Output Statements

109

Other Statements

109

Expressions

109

Relational Operators

110

Boolean Operators

110

Card Existence Predicate

111

Mathematical Operators

111

Random

111

Expression for Getting Input from User

112

Aggregate Operations

112

Queries

113

Queries and Aggregates in Combination

114

List Operators

114

Loop and Conditional Control Structures

119

Iteration Control Structure

119

Conditional Control Structure

121

Domain-Specific Support

123

Graphical Objects

123

Animation

124

Mouse Click Detection

127

Collision Detection

127

Coordinate System

129

Programming Environment

129

System-wide Menu Commands

129

Event Browser

131

Testing Window

136

Cards Window

137

Handy’s Hand

137

Runtime Errors

138

Implementation Details

141

HANDS Runtime Implementation

141

Format for Saved Files

143

Contents

xii

A Programming System for Children that is Designed for Usability

Sample Program

143

Importing Components

145

Summary

146

CHAPTER 6

Evaluation

147

User Study

148

Queries and the Alternative

149

Aggregate Operators and the Alternative

150

Visibility of Data and the Alternative

150

The Study

152

Participants

152

Materials

152

Procedure

153

Results

153

Informal Observations

155

Summary of Study

155

Example Programs

156

Breakout Game

156

Simulation of the Ideal Gas Law

156

Towers of Hanoi

157

Computing Prime Numbers

158

Comparison with Another System

159

Some Weaknesses of HANDS

161

Range of Capabilities

161

Programming Strategies

162

Evaluation of Earlier Design Ideas

163

Some Criticisms of HANDS

165

Summary of Evaluation

167

CHAPTER 7

Future Work

169

Further Evaluation and User Testing

169

Ideas for Extending HANDS

170

Modularity and Encapsulation

170

Multiple Agents

171

A Programming System for Children that is Designed for Usability

xiii

Contents

Graphics Primitives

172

Improvements to Collision Detection and Animation

172

Timers

173

Match Forms

173

Widget Library

173

Dealing with Large Numbers of Cards

174

Editing and Debugging Support

174

HANDS as a Complete Package for Teachers and Students

175

Applications of Results to Other Areas

175

Model of Computation

175

Export Features to Other Languages

175

Influence Design Process for Future Languages and Domains

176

Applications of Match Forms

176

CHAPTER 8

Conclusion

177

Contributions

177

Design Process

177

HANDS

178

Tabular Method for Expressing Boolean Queries

178

User Studies

178

Survey of Prior Work

179

Closing Remarks

179

CHAPTER 9

References

181

APPENDIX A

Language Syntax Chart

193

APPENDIX B

Example Programs

215

Breakout

216

Ideal Gas Law Simulation

222

Towers of Hanoi

228

Extension to Towers of Hanoi

229

Primes Sieve

230

Compass

230

Contents

xiv

A Programming System for Children that is Designed for Usability

Boundaries

231

Trap Door

232

APPENDIX C

Background Research

233

APPENDIX D

Materials from Study 1

321

APPENDIX E

Materials from Study 2

341

APPENDIX F

Materials from Study 3

381

APPENDIX G

Materials from Study 4

415

A Programming System for Children that is Designed for Usability 1

CHAPTER 1

Introduction

Only a very small proportion of users can program their computers. However, most could

benefit in some way from this powerful capability, whether to customize and interconnect

their existing applications or to create new ones. As with writing, “the significance of pro-

gramming derives not only from the carefully crafted works of a few professionals, but also

from the casual jottings of ordinary people” [diSessa 1986, p. 859]. For ordinary people,

understandability, familiarity, ease of performing small tasks, and user interface are more

important features in a programming system than technical objectives such as mathematical

elegance, efficiency, verifiability, or uniformity.

Many of the people who try to learn to program are quickly discouraged because it is very

difficult. In fact, it is even challenging for more experienced people who have received

formal training. Why is programming so difficult? Part of the problem is that it requires

problem solving skills and great precision, but this does not fully explain the difficulty.

Even when a person can envision a viable detailed solution to a programming problem, it

is often very hard to express the solution correctly in the form required by the computer.

This is a user-interface problem that has long been recognized but neglected.

2 A Programming System for Children that is Designed for Usability

Introduction

1.1 Historical Context

In 1971, Gerald Weinberg published

The Psychology of Computer Programming

, with the

stated goal to trigger a new field that studies computer programming as a human activity

[Weinberg 1971]. At the time, there was little scientific literature about the human aspect

of programming, and most of it appeared in technical reports and other obscure publica-

tions. The field began to grow quickly after Allen Newell addressed the third ACM

CHI

Conference on Human Factors in Computing Systems

, and later published his comments in

an article with Stuart Card:

Millions for compilers, but hardly a penny for understanding
human programming language use. Now, programming lan-
guages are obviously symmetrical, the computer on one side,
the programmer on the other. In an appropriate science of
computer languages, one would expect that half the effort
would be on the computer side, understanding how to trans-
late the languages into executable form, and half on the
human side, understanding how to design languages that are
easy or productive to use. Yet we do not even have an enu-
meration of all of the psychological functions programming
languages serve for the user. Of course, there is lots of pro-
gramming language

design

, but it comes from computer sci-
entists. And though technical papers on languages contain
many appeals to ease of use and learning, they patently con-
tain almost no psychological evidence nor any appeal to psy-
chological science. [Newell 1985, p. 212]

Soon two workshop series were started, which have become focal points for research in the

usability of programming languages: the

Psychology of Programming Interest Group

(PPIG) explores the cognitive aspects of computer programming; and the

Empirical Studies

of Programmers

 (ESP) group focuses on empirical studies of beginners and experts.

Over the past three decades, many researchers have worked to understand the cognitive

demands of programming and the sources of difficulty in existing programming languages

and tools. In addition to the proceedings of the PPIG and ESP workshop series, relevant

work has appeared in the

International Journal of Human-Computer Studies

 (formerly

International Journal of Man-Machine Studies

), the proceedings of the ACM

CHI

 confer-

ence and the IEEE

Human-Centric Computing

 (formerly

Visual Languages

) conference,

A Programming System for Children that is Designed for Usability 3

Introduction

and the books

Studying the Novice Programmer

 [Soloway 1989b],

Psychology of Pro-

gramming

 [Hoc 1990a], and

Software Design: Cognitive Aspects

 [Détienne 2001].

1.2 A User Centered Design Process for Programming Systems

It is disappointing that the knowledge gathered over the past thirty years has had so little

influence on the designs of new programming systems (in this document, the term pro-

gramming system is used to encompass the programming language as well as the tools for

viewing, editing, debugging and running programs). In order to help remedy this, I have

organized the prior work that studied beginner programmers so that it might be readily

included among the guidelines and strategies that are used by future programming system

designers. Generally, language designers have focused on technical goals for their systems,

such as to build systems that are scalable, efficient, reusable, provably correct, or that have

mathematical elegance. When they face a design decision that is not determined by these

criteria, they usually choose a solution that is similar to existing languages or one that

appeals to their intuition. Usability has rarely been adopted as a formal objective.

I believe that usability should always be included among the criteria that are considered

during the design of programming systems. Depending on the constraints of a particular

project and target audience, usability may be given more or less weight. However, it is

always worth considering for at least those decisions that are not already determined by

other design criteria

In this thesis, I exemplify a new design process for programming systems, where usability

is treated as a first-class objective:

1.

Identify the target audience

 and the domain, that is, the group of people who will be

using the system and the kinds of problems they will be working on.

2.

Understand the target audience

, both the problems they encounter and the existing rec-

ommendations on how to support their work. This includes an awareness of general

HCI principles as well as prior work in the psychology of programming and empirical

studies. When issues or questions arise that are not answered by the prior work, conduct

new studies to examine them.

3.

Design the new system

 based on this information.

4 A Programming System for Children that is Designed for Usability

Introduction

4.

Evaluate the system

 to measure its success, and understand any new problems that the

users have. If necessary, redesign the system based on this evaluation, and then re-eval-

uate it.

In this design process, all of the prior knowledge about the human aspects of programming

are considered, and the strategy for addressing any unanswered questions is to conduct user

studies to obtain design guidance and to assess prototypes. For my new programming

system for children, I adopted an extreme position by giving usability precedence over

other objectives.

While my focus has been on beginner programmers, I believe this approach also applies to

experts, and that it can have positive impacts on training and productivity as well as the reli-

ability of professional software systems. Improving the programming systems used by

experts will also affect beginners, because although these systems may not be the best

choices for learning to program, they are often chosen because they are widely available

and familiar to mentors. Everyone would benefit if these programming languages and tools

were more usable.

1.3 Motivation

The goal of this thesis is to

enable

 more beginners to learn to program for their personal

purposes, with minimal training. There is no explicit goal to teach any particular computer

science concepts, such as recursion, unless the concept is essential to the users achieving

their goals. There is also no requirement for the new programming language produced by

this work to match existing programming languages. Ideally, the new system will be gen-

eral and powerful enough that many people will achieve their objectives without having to

move to other new languages. Hopefully, the need to learn some of the harder computer

science concepts can be deferred or eliminated. For those who do move on to other lan-

guages or even to become computer scientists, their early success with this first language

should ease their difficulties in learning the harder computer science concepts.

1.4 Thesis Statement

The thesis statement for this work is:

A Programming System for Children that is Designed for Usability 5

Introduction

this user-centered design process, incorporating principles
from human-computer interaction, psychology of program-
ming, and empirical studies, will result in a unique program-
ming system that is easier to learn and use than more
conventional programming systems.

1.5 Target Audience and Domain

The target audience for my new programming system is children in fifth grade (about ten

years old) or older. I chose to build a system for children because they often have an interest

in learning how to program, but can be quickly discouraged when they try. Their goals are

creative and ambitious – they would like to make programs that are similar to the applica-

tions they use, such as games and simulations. These applications are graphically rich and

highly interactive, unlike the first programs they are likely to create in many professional

programming systems, such as to display “hello world” on the screen. My goal is to provide

an easy entry into creating these interactive graphical programs. However, to the extent

possible, I also tried to create a general purpose language that scales well, so that it is not

inherently limited to creating toy programs.

1.6 Understanding the Target Audience

In addition to general design principles that are applicable to all users, there is a wealth of

information available about how beginner programmers work and the problems they

encounter. This section summarizes the prior work and briefly describes the new studies I

conducted to examine additional questions.

1.6.1 General Design Principles

The field of

Human Computer Interaction

 (HCI) has general principles and heuristics that

can be applied to programming system design [Nielsen 1994]:

• simple and natural dialog – user interfaces should be simplified, and should match the

user’s task in as natural a way as possible, such that the mapping between computer

concepts and user concepts becomes straightforward.

• speak the user’s language – the terminology in user interfaces should be based on the

user’s language, instead of using system-oriented terms or attaching non-standard

meanings to familiar words.

6 A Programming System for Children that is Designed for Usability

Introduction

• minimize user memory load – the system should take over the burden of memory from

the user.

• consistency – the same command or action should always have the same effect.

• feedback – the system should continuously inform the user about what it is doing and

how it is interpreting the user’s input.

• clearly marked exits – the system should offer the user an easy way out of as many sit-

uations as possible, including ways to undo.

• shortcuts – the system should make it possible for experienced users to perform fre-

quently used operations quickly.

• good error messages – the system should report errors politely in clear language, avoid

obscure codes, use precise rather than vague or general explanations, and include con-

structive help for solving the problem.

• prevent errors – where possible, the user interface should be structured to avoid error

situations.

• help and documentation – the help system and documentation should provide a quick

way for users to find task-specific information when they are having a problem.

Many of these principles are routinely violated by programming systems – several exam-

ples are presented in Chapter 2.

When designing and evaluating programming systems, it is also useful to consider the more

specific evaluation criteria in the

Cognitive Dimensions of Notations

 framework (Cognitive

Dimensions, for short) [Blackwell 2000, Green 1996]:

• viscosity – the system should not resist change; it should not require many user actions

to accomplish one small goal.

• visibility – the information needed by the programmer at any particular time should be

visible or very easy to access.

• premature commitment – the system should not force the user to go about the job in a

particular order, or make a decision before the needed information is available.

• hidden dependencies – important links between entities should be visible.

A Programming System for Children that is Designed for Usability 7

Introduction

• role expressiveness – the purpose of an entity should be readily apparent.

• error proneness – the notation should protect against slips and errors.

• closeness of mapping – the system’s operations should closely match the way users

think about problem solutions.

• secondary notation – the system should allow the programmer to communicate addi-

tional information with comments, typography, layout, etc.

• progressive evaluation – the system should permit users to test partial programs.

• diffuseness – small goals should not require extraordinarily long solutions or large

amounts of screen space.

• provisionality – the system should allow the user to sketch out uncertain parts of their

solution.

• hard mental operations – none of the system’s operations should require great mental

effort to use.

• consistency – similar notations should mean similar things, and vice versa.

• abstraction management – the system should provide a way to define new facilities or

terms that allow the user to express ideas more clearly or succinctly, but it should not

force users to use this capability right from the start.

These factors are sometimes in conflict, so improving the system along one dimension can

result in reduced performance on another. Tradeoffs are necessary, and in making these

tradeoffs it is useful to consider cognitive models and observations from empirical studies.

1.6.2 Observations about Existing Programming Languages

The principles of

simple and natural dialog, speak the user’s language

and

closeness of

mapping

 are reinforced by cognitive models that define programming as a process where

the user translates a mental plan into one that is compatible with the computer [Hoc 1990b].

The language should minimize the difficulty of this translation by providing operators that

match those in the plan, including any that may be specific to the topic or domain of the

program. “The closer the programming world is to the problem world, the easier the prob-

lem-solving ought to be.... Conventional textual languages are a long way from that goal”

8 A Programming System for Children that is Designed for Usability

Introduction

[Green 1996, p. 146]. Hix & Hartson describe the general usability guideline to

use cogni-

tive directness

 [Hix 1993, p. 38] to “minimize the mental transformations that a user must

make. Even small cognitive transformations by a user take effort away from the intended

task.” If the language does not provide these high-level operators, programmers have to

assemble lower-level primitives to achieve their goals. This synthesis is one of the greatest

cognitive barriers to programming [Lewis 1987].

Programmers are often required to think about algorithms and data in ways that are very

different than the ways they already think about them in other contexts. For example, a typ-

ical C program to compute the sum of a list of numbers includes three kinds of parentheses

and three kinds of assignment operators in five lines of code:

sum = 0;
for (i=0; i<numItems; i++) {

sum += items[i];
}
return sum;

In contrast, this can be done in a spreadsheet with a single line of code using the

sum

 oper-

ator [Green 1996]. The mismatch between the way a programmer thinks about a solution

and the way it must be expressed in the programming language makes it more difficult not

only for beginners to learn how to program, but also for people to carry out their program-

ming tasks even after they become more experienced. One of the most common bugs

among professional programmers using C and C++ is the accidental use of “=” (assign-

ment) instead of “==” (equality test). This mistake is easy to make and difficult to find, not

only because of typographic similarity, but also because “=” operator does indeed mean

equality in other contexts such as mathematics.

Soloway, Bonar & Erlich [Soloway 1989a] found that the looping control structures pro-

vided by modern languages do not match the natural strategies that most people bring to

the programming task. Furthermore, when novices are stumped they try to transfer their

knowledge of natural language to the programming task. This often results in errors

because the programming language defines these constructs in an incompatible way [Bonar

1989]. For example,

then

 is interpreted as

afterwards

 instead of

in these conditions

.

A Programming System for Children that is Designed for Usability 9

Introduction

1.6.3 Naturalness

There are two ways to improve closeness of mapping. One is to teach people to think more

like computers; the other is to make the programming system’s operations match how users

think. The latter approach is preferred in this thesis. A primary goal of my programming

system is to support the

natural

 ways that non-programmers think about problem solutions,

instead of making them learn new and often unnatural ways to accomplish their objectives.

In this context, natural means

expected or accepted

. If people have a viable approach to

solving problems, the ideal programming system would support that solution directly,

without requiring the programmer to learn anything new or perform additional work in

translating their ideas into program code.

By this definition, naturalness is not universal for all humans. People from different back-

grounds and cultures, or from different points in history, are likely to bring different expec-

tations and methods to the programming task. Therefore, a programming system that is

designed to be natural for a particular target audience is unlikely to be universally optimal.

This is why identifying the target audience is an intrinsic part of the design process, and

why the process itself is important. It will have to be applied over and over again, in order

to best support the particular characteristics of the people who will use each new program-

ming system.

Striving for naturalness does not necessarily imply that the programming language should

use natural language. Programming languages that have adopted natural-language-like syn-

taxes, such as Cobol [Sammet 1981] and HyperTalk [Goodman 1987], still have many

usability problems. For example, HyperTalk often violates the principle of consistency

[Thimbleby 1992]. There are also many ambiguities in natural language that are resolved

by humans through shared context and cooperative conversation [Grice 1975].

Novices attempt to enter into a human-like discourse with the computer, but programming

languages systematically violate human conversational maxims because the computer

cannot infer from context or enter into a clarification dialog [Pea 1986]. The use of natural

language may compound this problem by making it more difficult for the user to under-

stand the limits of the computer’s intelligence [Nardi 1993].

10 A Programming System for Children that is Designed for Usability

Introduction

However, these arguments do not imply that the algorithms and data structures should not

be close to the ways people think about the problem. In fact, leveraging users’ natural-lan-

guage-like knowledge in a more formalized syntax can be an effective strategy for design-

ing end-user-programming languages [Bruckman 1999].

There are additional motivations for why a more natural programming language might be

better. A programming language is a type of user interface, and user interfaces in general

are recommended to be

natural

 so they are easier to learn and use, and will result in fewer

errors. Naturalness is closely related to the concept of directness which, as part of

direct

manipulation

, is a key principle in making user interfaces easier to use. Hutchins, Hollan

& Norman describe

directness

 as the distance between one’s goals and the actions required

by the system to achieve those goals [Hutchins 1986]. Reducing this distance makes sys-

tems more direct, and therefore easier to learn. User interface designers and researchers

have been promoting directness at least since Shneiderman identified the concept [Shnei-

derman 1983], but it has not been a consideration in most programming language designs.

1.6.4 Studies of Naturalness in Problem Solving

This thesis presents two studies examining the language and structure that children and

adults naturally use before they have been exposed to programming (Chapter 3). In these

studies, I gave programming tasks to non-programmers and they solved these problems by

writing and sketching their answers on paper. The tasks covered a broad set of essential pro-

gramming techniques and concepts, such as control structures, storage and manipulation of

data, arithmetic, Boolean logic, searching and sorting, animation, interactions among

objects, etc. In posing the problems, I was careful to minimize the risk that my materials

would influence the answers, so I used pictures and very terse captions.

Some observations from these studies were:

• An event-based or rule-based structure was often used, where actions were taken in

response to events. For example, “when pacman loses all his lives, it’s game over.”

• Aggregate operators (acting on a set of objects all at once) were used much more often

than iterating through the set and acting on the objects individually. For example,

“Move everyone below the 5th place down by one.”

A Programming System for Children that is Designed for Usability 11

Introduction

• Participants did not construct complex data structures and traverse them, but instead

performed content-based queries to obtain the necessary data when needed. For exam-

ple, instead of maintaining a list of monsters and iterating through the list checking the

color of each item, they would say “all of the blue monsters.”

• A natural language style was used for arithmetic expressions. For example, “add 100 to

score.”

• Objects were expected to automatically remember their state (such as motion), and the

participants only mentioned changes in this state. For example, “if pacman hits a wall,

he stops.”

• Operations were more consistent with list data structures, rather than arrays. For exam-

ple, the participants did not create space before inserting a new object into the middle

of a list.

• Participants rarely used Boolean expressions, but when they did they were likely to

make errors. That is, their expressions were not correct if interpreted according to the

rules of Boolean logic in most programming languages.

• Participants often drew pictures to sketch out the layout of the program, but resorted to

text to describe actions and behaviors.

1.6.5 Study of Methods to Specify Queries

Because content-based queries were prevalent in non-programmers’ problem solutions, I

began to explore how this might be supported in a programming language. Queries are usu-

ally specified with Boolean expressions, and the accurate formulation of Boolean expres-

sions has been a notorious problem in programming languages, as well as other areas such

as database query tools [Hildreth 1988, Hoc 1989]. In reviewing prior research I found that

there are few prescriptions for how to solve this problem effectively. For example, prior

work suggests avoiding the use of the Boolean keywords

AND

,

OR

, and

NOT

[Greene

1990, McQuire 1995, Michard 1982], but does not recommend a suitable replacement

query language.

Therefore I conducted a new study to examine the ways untrained children and adults nat-

urally express and interpret queries, and to test a new tabular query form that I designed

12 A Programming System for Children that is Designed for Usability

Introduction

called

match forms

 (shown in Figure 1-1). This study confirmed that relying on the Boolean

keywords, as well as parentheses for grouping, would result in poor usability. Textual alter-

natives that avoided the Boolean keywords were not reliably better. However, the match

forms were successful.

Each match form contains a vertical list of slots. Conjunction is specified by placing terms

into these slots, one term per slot. Negation is performed by prefacing a term with the

NOT

operator, and disjunction is specified by placing additional match forms adjacent to the first

one. This design avoids the need to name the

AND

 and

OR

 operators, provides a clear dis-

tinction between conjunction and disjunction, and makes grouping explicit. Match forms

are suitable for incorporation into programming systems. When compared with textual

Boolean expressions, users performed significantly better when they expressed their que-

ries using match forms. When interpreting already-written queries, performance was about

equal using either language. Chapter 4 contains full details about match forms and this

study, as well as an application of this work to the search interface for the online

HCI Bib-

liography

.

1.6.6 Model of Computation

One of the biggest challenges for new programmers is to gain an accurate understanding of

how computation takes place. Traditionally, programming is described to beginners in

completely unfamiliar terms, often based on the von Neumann model, which has no real-

world counterpart [du Boulay 1989a, du Boulay 1989b]. Beginners must learn, for exam-

ple, that the program follows special rules of control flow for procedure calls and returns.

There are complex rules that govern the lifetimes of variables and their scopes. Variables

Figure 1-1.

Match forms expressing the query: (blue and not square) or (circle and not green)

A Programming System for Children that is Designed for Usability 13

Introduction

may not exist at all when the program is not running, and during execution they are usually

invisible, forcing the programmer to use print statements or debuggers to inspect them. This

violates the principle of visibility, and contributes to a general problem of memory over-

load [Anderson 1985, Davies 1993].

Usability could be enhanced by providing a different model of computation that uses con-

crete and familiar terms [Mayer 1989, Smith 1994]. Using a different model of computation

can have broad implications beyond beginners, because the model influences, and perhaps

limits, how experienced programmers think about and describe computation [Stein 1999].

Section 1.7.1 introduces the new model of computation I invented to address this problem.

1.6.7 Visual vs. Textual

In visual languages, graphics replace some or all of the text in specifying programs. Propo-

nents of visual programming languages often argue that reducing or eliminating the text in

programming will improve usability [Smith 1994]. However, much of the underlying ratio-

nale for this expectation is suspect [Blackwell 1996]. User studies have shown mixed

results on the superiority of visual languages over text (e.g. [Green 1992]), and the advan-

tage of visual languages tends to diminish on larger tasks. It is useful to note that one of the

most successful end-user programming systems to date is the spreadsheet, which is mostly

textual [Nardi 1993].

My new programming system supports the hybrid graphical-textual approach used by the

participants in my studies, and relies on the programming environment to alleviate some of

the difficulties of textual languages. For example, during program entry, context-sensitive

menus like those in Microsoft’s Visual Studio can make it easier to know what choices are

available and to help the user to enter the program correctly. This support could be aug-

mented with a drag-and-drop syntax-directed editor, as seen in Squeak’s eToys interface

[Steinmetz 2001] and other systems. The system can also provide visual representations for

textual elements that are difficult, such as the match forms mentioned in Section 1.6.5.

1.7 The HANDS Programming System Design

All of these observations have influenced the design of my new programming system,

which is called HANDS (Human-centered Advances for the Novice Development of Soft-

14 A Programming System for Children that is Designed for Usability

Introduction

ware). HANDS uses an event-based language that features a new concrete model for com-

putation, provides queries and aggregate operators that match the way non-programmers

express problem solutions, has high-visibility of program data, and includes domain-spe-

cific features for the creation of interactive animations and simulations. The HANDS

system is detailed in Chapter 5.

1.7.1 Computational Model

In HANDS, the computation is represented as an agent named Handy, sitting at a table

manipulating a set of cards (see Figure 1-2). All of the data in the system is stored on these

cards, which are global, persistent and visible on the table. Each card has a unique name,

and an unlimited set of name-value pairs, called properties. The program itself is stored in

Handy’s

thought bubble

. To emphasize the limited intelligence of the system, Handy is por-

trayed as an animal – like a dog that knows a few commands – instead of a person or a robot

that could be interpreted as being very intelligent.

Figure 1-2.

 The HANDS system portrays the components of a program on a round table. All data is stored
on cards, and the programmer inserts code into Handy’s thought bubble at the upper left corner. When the
play button is pressed, Handy begins responding to events by manipulating cards according to the
instructions in the thought bubble. This is described in more detail in Chapter 5.

A Programming System for Children that is Designed for Usability 15

Introduction

1.7.2 Programming Style and Model of Execution

HANDS is event-based, the programming style that most closely matches the problem

solutions in my studies. A program is a collection of event handlers that are automatically

called by the system when a matching event occurs. Inside an event handler, the program-

mer inserts the code Handy should execute in response to the event.

1.7.3 Aggregate Operations

In my studies, I observed that the participants used aggregate operators, manipulating

whole sets of objects in one statement rather than iterating and acting on them individually.

Many languages force users to perform iteration in situations where aggregate operations

could accomplish the task more easily [Miller 1981]. Requiring users to translate a high-

level aggregate operation into a lower-level iterative process violates the principle of

close-

ness of mapping

.

HANDS has full support for aggregate operations. All operators can accept lists as well as

singletons as operands, or even one of each. For example,

•

1 + 1

 evaluates to

2

•

1 + (1,2,3)

 evaluates to

2,3,4

•

(1,2,3) + 1

 evaluates to

2,3,4

•

(1,2,3) + (2,3,4)

 evaluates to

3,5,7

1.7.4 Queries

In my studies, I observed that users do not maintain and traverse data structures. Instead,

they perform queries to assemble lists of objects on demand. For example, they say “all of

the blue monsters.” HANDS provides a query mechanism to support this. The query mech-

anism searches all of the cards for the ones matching the programmer’s criteria.

Queries begin with the word

all

. If a query contains a single value, it returns all of the cards

that have that value in any property. Figure 1-3 contains cards representing three flowers

and a bee to help illustrate the following queries.

•

all flowers

 evaluates to

orchid, rose, tulip

16 A Programming System for Children that is Designed for Usability

Introduction

•

all bees

 evaluates to

bumble

•

all snakes

 evaluates to the empty list

HANDS permits more complex queries to be specified with traditional Boolean expres-

sions, however the intention is to eventually incorporate match forms into the system as an

option for specifying and displaying queries.

Queries and aggregate operations work in tandem to permit the programmer to concisely

express actions that would require iteration in most languages. For example,

• set the nectar of all flowers to 0

1.7.5 Domain-Specific Support

HANDS has domain-specific features that enable programmers to easily create highly-

interactive graphical programs. For example, the system’s suite of events directly supports

this class of programs. The system automatically detects collisions among objects and gen-

erates events to report them to the programmer. It also generates events in response to input

from the user via the keyboard and mouse. It is easy to create graphical objects and text on

the screen, and animation can be accomplished without any programming.

1.8 Evaluation

To examine the effectiveness of three key features of HANDS:

queries, aggregate opera-

tions, and data visibility

, I conducted a study comparing the system with a limited version

that lacks these features. In the limited version, programmers could achieve the same

results but had to use more traditional programming techniques. Fifth-grade children were

Figure 1-3.

When the system evaluates the query

all flowers

 it returns

rose, tulip, orchid

A Programming System for Children that is Designed for Usability 17

Introduction

able to learn the HANDS system during a three-hour session, and then use it to solve pro-

gramming problems. Children using the full-featured HANDS system performed signifi-

cantly better than their peers who used the reduced-feature version. This is evidence that

this set of features improves usability over the typical set of features in programming sys-

tems.

In a separate informal study, a high-school student compared hands with Stagecast, a com-

mercial programming environment for children [Earhart 1999]. He implemented a game in

both systems, and concluded that HANDS was easier to use, enabled him to implement

more features, and required fewer lines of code. In addition, several more experienced pro-

grammers have used HANDS to implement a broad variety of programs to explore its range

of capabilities.

Evaluation of the HANDS system is detailed in Chapter 6.

1.9 Contributions

The contributions of this thesis are:

• a case study of a new

design process

 for creating programming systems, where usabil-

ity is a first class objective;

• the

HANDS programming system

 for children, which has a unique set of features due to

its user-centered design, several of which were demonstrated to be more usable than

those found in typical programming systems;

• a new

model of computation

, or way of thinking about programs, that is concrete and

based on familiar concepts, unlike the traditional Turing machine or von Neumann

machine models;

• a general-purpose

programming language

 that offers database-style access to the pro-

gram’s data, and in which all operators can be applied to singletons and lists;

•

match forms

, a tabular method for expressing queries that was compared to textual

expressions and shown to improve beginners’ performance;

• a new

query interface

for the

HCI Bibliography (www.hcibib.org), based on match

forms, which reduces user errors in comparison to the old interface;

18 A Programming System for Children that is Designed for Usability

Introduction

•

empirical evidence

about how non-programmers express problem solutions, which can

be used to help designers generate and select programming system features that provide

a close mapping between those problem solutions and their expression in program

code;

•

empirical evidence

characterizing the kinds of errors made by inexperienced users of

textual Boolean expressions;

•

a user study

 demonstrating the effectiveness of queries, aggregate operations, and high-

visibility of data, in comparison to the typical features sets of programming systems;

and,

• a

broad survey

 of the prior work on beginner programmers, organized in a form that can

be used by other programming system designers (appears in Appendix C).

1.10 Overview of Thesis

The remainder of this thesis is organized as follows: Chapter 2 describes the prior empirical

work on beginner programmers as well as other programming systems for beginners and

children; Chapter 3 describes the first two studies examining the language and structure in

non-programmers solutions to programming problems; Chapter 4 describes the third study,

examining methods for specifying queries, and provides details about match forms; Chap-

ter 5 details the design of the HANDS system; Chapter 6 describes a fourth study, to eval-

uate features of HANDS, as well as other less formal evaluations; Chapter 7 discusses the

implications of this work and some ideas for future work; and Chapter 8 gives some con-

cluding remarks.

Supplemental materials are contained in appendices. Appendix A contains a formal speci-

fication of the HANDS language syntax; Appendix B contains some example programs

implemented in HANDS; Appendix C contains the full text of my technical report survey-

ing usability issues in programming systems for beginners; Appendix D contains the mate-

rials used in the first study; Appendix E contains the materials used in the second study;

Appendix F contains the materials used in the third study; and Appendix G contains the

materials used in the fourth study.

A Programming System for Children that is Designed for Usability 19

Introduction

This document contains only Chapter 1 of the thesis.
For citation, please refer to the full thesis document, which is available at:

http://www.cs.cmu.edu/~pane/thesis

20 A Programming System for Children that is Designed for Usability

Introduction

A Programming System for Children that is Designed for Usability 181

CHAPTER 9

References

Anderson, J.R. and Jeffries, R. (1985). “Novice LISP Errors: Undetected Losses of Infor-
mation from Working Memory.” Human-Computer Interaction 1: 107-131.

Anick, P.G., Brennan, J.D., Flynn, R.A., Hanssen, D.R., Alvey, B. and Robbins, J.M.
(1990). A Direct Manipulation Interface for Boolean Information Retrieval via Nat-
ural Language Query. Proceedings of the Thirteenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. Brus-
sels, Belgium: 135-150.

Baraff, D. (1989). “Analytical Methods for Dynamic Simulation of Non-Penetrating Rigid
Bodies.” Computer Graphics 23(3): 223-232.

Biermann, A.W., Ballard, B.W. and Sigmon, A.H. (1983). “An Experimental Study of Nat-
ural Language Programming.” International Journal of Man-Machine Studies 18(1):
71-87.

Blackwell, A.F. (1996). Metacognitive Theories of Visual Programming: What Do We
Think We Are Doing? Proceedings of the VL'96 IEEE Symposium on Visual Lan-
guages. Boulder, CO, IEEE Computer Society Press: 240-246.

Blackwell, A.F. and Green, T.R.G. (2000). A Cognitive Dimensions Questionnaire Opti-
mised for Users. Proceedings of the 12th Annual Meeting of the Psychology of Pro-

182 A Programming System for Children that is Designed for Usability

References

grammers Interest Group. A. F. Blackwell and E. Bilotta. Corigliano Calabro, Italy,
Edizioni Memoria: 137-154.

Bonar, J. and Soloway, E. (1989). Preprogramming Knowledge: A Major Source of Mis-
conceptions in Novice Programmers. Studying the Novice Programmer. E. Soloway
and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 325-353.

Bonar, J.G. and Cunningham, R. (1988). Bridge: Tutoring the Programming Process.
Intelligent Tutoring Systems: Lessons Learned. J. Psotka, L. D. Massey and S. A.
Mutter. Hillsdale, NJ, Lawrence Erlbaum Associates: 409-434.

Bourne, L.E. (1966). Human Conceptual Behavior. Boston, Allyn & Bacon.

Bruckman, A. and Edwards, E. (1999). Should We Leverage Natural-Language Knowl-
edge? An Analysis of User Errors in a Natural-Language-Style Programming Lan-
guage. Proceedings of the 1999 Conference on Human Factors in Computing
Systems. Pittsburgh, PA, ACM Press: 207-214.

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A. and Miller, P. (1997).
“Mini-languages: A Way to Learn Programming Principles.” Education and Infor-
mation Technologies 2(1): 65-83.

Carriero, N. and Gelernter, D. (1989). “Linda in Context.” Communications of the ACM
32(4): 444-458.

Carver, N. and Lesser, V. (1994). “The Evolution of Blackboard Control Architectures.”
Expert Systems with Applications 7(1): 1-30.

Conway, D.M. (1998). An Algorithmic Approach to English Pluralization. Proceedings of
the Second Annual Perl Conference. C. Salzenberg. San Jose, CA, O'Reilly.

Conway, M., Audia, S., Burnette, T., Cosgrove, D., Christiansen, K., Deline, R., Durbin,
J., Gossweiler, R., Koga, S., Long, C., Mallory, B., Miale, S., Monkaitis, K., Patten,
J., Pierce, J., Shochet, J., Staack, D., Stearns, B., Stoakley, R., Sturgill, C., Viega, J.,
White, J., Williams, G. and Pausch, R. (2000). Alice: Lessons Learned from Build-
ing a 3D System for Novices. Proceedings of CHI2000 Conference on Human Fac-
tors in Computing Systems. T. Turner and G. Szwillis. The Hague, Netherlands,
ACM Press: 486-493.

Conway, M.J. (1997). Alice: Easy-to-Learn 3D Scripting for Novices. Ph.D. Thesis. Uni-
versity of Virginia. School of Engineering and Applied Science,

242

pages.

A Programming System for Children that is Designed for Usability 183

References

Cordy, J.R. (1992). Hints on the Design of User Interface Language Features – Lessons
from the Design of Turing. Languages for Developing User Interfaces. B. A. Myers.
Boston, Jones and Bartlett: 329-340.

Cypher, A. and Smith, D.C. (1995). KidSim: End User Programming of Simulations. Pro-
ceedings of CHI'95 Conference on Human Factors in Computing Systems. Denver,
ACM: 27-34.

Davies, S.P. (1993). Externalising Information During Coding Activities: Effects of
Expertise, Environment and Task. Empirical Studies of Programmers: Fifth Work-
shop. C. R. Cook, J. C. Scholtz and J. C. Spohrer. Palo Alto, CA, Ablex Publishing
Corporation: 42-61.

Détienne, F. (1990). Difficulties in Designing with an Object-Oriented Programming Lan-
guage: An Empirical Study. Proceedings of INTERACT '90 Conference on Com-
puter-Human Factors. Cambridge, England: 971-976.

Détienne, F. (2001). Software Design: Cognitive Aspects. London, Springer.

DiGiano, C., Kahn, K., Cypher, A. and Smith, D.C. (2001). “Integrating Learning Sup-
ports into the Design of Visual Programming Systems.” Journal of Visual Languages
& Computing 12(5): 501-524.

DiGiano, C.J. (1996). Self-Disclosing Design Tools: An Incremental Approach Toward
End-User Programming. Boulder, CO, University of Colorado

:

Department of Com-
puter Science Technical Report

CU-CS-822-96,

154

pages.

diSessa, A.A. and Abelson, H. (1986). “Boxer: A Reconstructible Computational
Medium.” Communications of the ACM 29(9): 859-868.

du Boulay, B. (1989a). Some Difficulties of Learning to Program. Studying the Novice
Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Asso-
ciates: 283-299.

du Boulay, B., O'Shea, T. and Monk, J. (1989b). The Black Box Inside the Glass Box: Pre-
senting Computing Concepts to Novices. Studying the Novice Programmer. E. Solo-
way and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 431-446.

Earhart, C., Ed. (1999). Stagecast Creator Teacher's Guide. Palo Alto, CA, Stagecast Soft-
ware, http://www.stagecast.com.

184 A Programming System for Children that is Designed for Usability

References

Essens, P.J.M.D., McCann, C.A. and Hartevelt, M.A. (1992). An Experimental Study of
the Interpretation of Logical Operators in Database Querying. Cognitive Ergonom-
ics: Contributions from Experimental Psychology. G. C. v. d. Veer, S. Bagnara and
G. A. M. Kempen. Amsterdam, North-Holland, Elsevier Science Publishers: 201-
225.

Finzer, W.F. and Gould, L. (1993). Rehearsal World: Programming by Rehearsal. Watch
What I Do: Programming by Demonstration. A. Cypher, MIT Press.

Galotti, K.M. and Ganong, W.F., III (1985). “What Non-Programmers Know About Pro-
gramming: Natural Language Procedure Specification.” International Journal of
Man-Machine Studies 22: 1-10.

Glass, R.L. (1995). “OO Claims – Naturalness, Seamlessness Seem Doubtful.” Software
Practitioner 5(2).

Goodman, D. (1987). The Complete HyperCard Handbook. New York, Bantam Books.

Gould, L. and Finzer, W. (1984). “Programming by Rehearsal.” BYTE Magazine 9(6).

Green, T.R.G. (1990). The Nature of Programming. Psychology of Programming. J.-M.
Hoc, T. R. G. Green, R. Samurçay and D. J. Gilmore. London, Academic Press: 21-
44.

Green, T.R.G. and Petre, M. (1992). When Visual Programs are Harder to Read than Tex-
tual Programs. Human-Computer Interaction: Tasks and Organisation, Proceedings
of ECCE-6 (6th European Conference on Cognitive Ergonomics). G. C. van der
Veer, M. J. Tauber, S. Bagnarola and M. Antavolits. Rome, CUD.

Green, T.R.G. and Petre, M. (1996). “Usability Analysis of Visual Programming Environ-
ments: A 'Cognitive Dimensions' Framework.” Journal of Visual Languages and
Computing 7(2): 131-174.

Greene, S.L., Devlin, S.J., Cannata, P.E. and Gomez, L.M. (1990). “No IFs, ANDs, or
ORs: A Study of Database Querying.” International Journal of Man-Machine Stud-
ies 32(3): 303-326.

Grice, H.P. (1975). Logic and Conversation. Syntax and Semantics III: Speech Acts. P.
Cole and J. Morgan. New York, Academic Press.

A Programming System for Children that is Designed for Usability 185

References

Gross, P. (1999). Director 7 and Lingo Authorized, Peachpit Press.

Hays, J.G. and Burnett, M.M. (1995). A Guided Tour of Forms/3, Oregon State Univer-
sity

:

Dept. of Computer Science Technical Report

95-60-6.

Hildreth, C. (1988). Intelligent Interfaces and Retrieval methods for Subject Search in
Bibliographic Retrieval Systems. Research, Education, Analysis & Design. Spring-
field, IL.

Hix, D. and Hartson, H.R. (1993). Developing User Interfaces: Ensuring Usability
Through Product and Process. New York, New York, John Wiley & Sons, Inc.

Hoc, J.-M. (1989). Do We Really Have Conditional Statements in Our Brains? Studying
the Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence
Erlbaum Associates: 179-90.

Hoc, J.-M., Green, T.R.G., Samurçay, R. and Gilmore, D.J., Eds. (1990a). Psychology of
Programming. Computers and People Series. London, Academic Press.

Hoc, J.-M. and Nguyen-Xuan, A. (1990b). Language Semantics, Mental Models and
Analogy. Psychology of Programming. J.-M. Hoc, T. R. G. Green, R. Samurçay and
D. J. Gilmore. London, Academic Press: 139-156.

Hutchins, E.L., Hollan, J.D. and Norman, D.A. (1986). Direct Manipulation Interfaces.
Hillsdale, NJ, Lawrence Erlbaum Associates.

Ingalls, D.H.H. (1981). Design Principles Behind Smalltalk. BYTE Magazine, August
1981.

Joers, J. (1999). Stagecast Creator Creator's Guide. Palo Alto, CA, Stagecast Software,
http://www.stagecast.com/.

Jones, S. (1998). Graphical Query Specification and Dynamic Result Previews for a Digi-
tal Library. Proceedings of the ACM Symposium on User Interface Software and
Technology: 143-151.

Kahn, K. (1996). “ToonTalk: An Animated Programming Environment for Children.”
Journal of Visual Languages and Computing 7(2): 197-217.

186 A Programming System for Children that is Designed for Usability

References

Kahn, K. (1999). From Prolog and Zelda to ToonTalk. Proceedings of the 1999 Interna-
tional Conference on Logic Programming. D. De Schreye, MIT Press.

Kohl, A. and Rupietta, W. (1987). The Natural Language Metaphor: An Approach to Avoid
Misleading Expectations. Proceedings of IFIP INTERACT'87: Human-Computer
Interaction: 555-560.

Lewis, C. and Olson, G.M. (1987). Can Principles of Cognition Lower the Barriers to Pro-
gramming? Empirical Studies of Programmers: Second Workshop. G. M. Olson, S.
Sheppard and E. Soloway. Norwood, NJ, Ablex: 248-263.

Martin, F.G. and Resnick, M. (1993). LEGO/Logo and Electronic Bricks: Creating a Sci-
enceland for Children. Advanced Educational Technologies for Mathematics and
Science. D. L. Ferguson. Berlin, Springer-Verlag.

Mayer, R.E. (1989). The Psychology of How Novices Learn Computer Programming.
Studying the Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ,
Lawrence Erlbaum Associates: 129-159.

McDaniel, R. (1999). Building Whole Applications Using Only Programming-by-Demon-
stration. Ph.D. Thesis. Carnegie Mellon University. Computer Science Department.
Pittsburgh, PA,

271

pages.

McIver, L.K. (2001). Syntactic and Semantic Issues in Introductory Programming Educa-
tion. Ph.D. Thesis. Monash University. School of Computer Science and Software
Engineering. Australia,

200

pages.

McQuire, A. and Eastman, C.M. (1995). Ambiguity of Negation in Natural Language
Queries. Proceedings of the Eighteenth Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval: 373.

Michard, A. (1982). “Graphical Presentation of Boolean Expressions in a Database Query
Language: Design Notes and an Ergonomic Evaluation.” Behaviour and Information
Technology 1(3): 279-288.

Miller, L.A. (1974). “Programming by Non-Programmers.” International Journal of Man-
Machine Studies 6(2): 237-260.

Miller, L.A. (1981). “Natural Language Programming: Styles, Strategies, and Contrasts.”
IBM Systems Journal 20(2): 184-215.

A Programming System for Children that is Designed for Usability 187

References

Miller, P., Pane, J., Meter, G. and Vorthmann, S. (1994). “Evolution of Novice Program-
ming Environments: The Structure Editors of Carnegie Mellon University.” Interac-
tive Learning Environments 4(2): 140-158.

Modugno, F. (1995). Extending End-User Programming in a Visual Shell with Program-
ming by Demonstration and Graphical Language Techniques. Ph.D. Thesis. Carn-
egie Mellon University. Computer Science Department. Pittsburgh, PA,

334

pages.

Modugno, F., Corbett, A.T. and Myers, B.A. (1996). Evaluating Program Representation
in a Visual Shell. Empirical Studies of Programmers: Sixth Workshop. W. D. Gray
and D. A. Boehm-Davis. Norwood, NJ, Ablex Publishing Corporation: 131-146.

Mulholland, P. and Watt, S.N.K. (2000). “Learning by Building: A Visual Modelling Lan-
guage for Psychology Students.” Journal of Visual Languages and Computing 11(5):
481-504.

Myers, B.A. (1992). “Demonstrational Interfaces: A Step Beyond Direct Manipulation.”
IEEE Computer 25(8): 61-73.

Nardi, B.A. (1993). A Small Matter of Programming: Perspectives on End User Comput-
ing. Cambridge, MA, The MIT Press.

Newell, A. and Card, S.K. (1985). “The Prospects for Psychological Science in Human-
Computer Interaction.” Human-Computer Interaction 1(3): 209-242.

Nielsen, J. (1994). Heuristic Evaluation. Usability Inspection Methods. J. Nielsen and R.
L. Mack. New York, John Wiley & Sons: 25-62.

Pane, J.F. and Myers, B.A. (1996). Usability Issues in the Design of Novice Programming
Systems. Pittsburgh, PA, Carnegie Mellon University

:

School of Computer Science
Technical Report

CMU-CS-96-132,

85

pages.

Pane, J.F. and Myers, B.A. (2000). Tabular and Textual Methods for Selecting Objects
from a Group. Proceedings of VL 2000: IEEE International Symposium on Visual
Languages. Seattle, WA, IEEE Computer Society: 157-164.

Pane, J.F., Ratanamahatana, C.A. and Myers, B.A. (2001). “Studying the Language and
Structure in Non-Programmers’ Solutions to Programming Problems.” International
Journal of Human-Computer Studies 54(2): 237-264.

188 A Programming System for Children that is Designed for Usability

References

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York,
Basic Books.

Pattis, R.E., Roberts, J. and Stehlik, M. (1995). Karel the Robot: A Gentle Introduction to
the Art of Programming. New York, John Wiley & Sons.

Pea, R. (1986). “Language-Independent Conceptual “Bugs” in Novice Programming.”
Journal of Educational Computing Research 2(1).

Pictorius (1996). Prograph CPX User Guide. Halifax, Nova Scotia, Pictorius Incorporated,
http://www.pictorius.com/prograph.html.

Repenning, A. (2000). AgentSheets®: an Interactive Simulation Environment with End-
User Programmable Agents. Interaction 2000, Tokyo, Japan.

Repenning, A. and Sumner, T. (1995). “Agentsheets: A Medium for Creating Domain-Ori-
ented Visual Languages.” Computer 28: 17-25.

Resnick, M. (1994). Turtles, Termites, and Traffic Jams: Explorations in Massively Paral-
lel Microworlds. Boston, The MIT Press.

Sammet, J.E. (1981). The Early History of COBOL. History of Programming Languages.
R. Wexelblat. New York, Academic Press.

Sherwood, B.A. (1988). The cT Language. Champaigne, IL, Stipes Publishing Company.

Shneiderman, B. (1983). “Direct Manipulation: A Step Beyond Programming Languages.”
IEEE Computer 16(8): 57-69.

Smith, D.C. (2000). “Building Personal Tools by Programming.” Communications of the
ACM 43(8): 92-95.

Smith, D.C., Cypher, A. and Spohrer, J. (1994). “KidSim: Programming Agents Without a
Programming Language.” Communications of the ACM 37(7): 54-67.

Soloway, E., Bonar, J. and Ehrlich, K. (1989a). Cognitive Strategies and Looping Con-
structs: An Empirical Study. Studying the Novice Programmer. E. Soloway and J. C.
Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 191-207.

A Programming System for Children that is Designed for Usability 189

References

Soloway, E. and Spohrer, J.C., Eds. (1989b). Studying the Novice Programmer. Hillsdale,
NJ, Lawrence Erlbaum Associates.

Spohrer, J.G. and Soloway, E. (1986). Analyzing the High Frequency Bugs in Novice Pro-
grams. Empirical Studies of Programmers. E. Soloway and S. Iyengar. Washington,
DC, Ablex Publishing Corporation: 230-251.

Stein, L.A. (1999). “Challenging the Computational Metaphor: Implications for How We
Think.” Cybernetics and Systems 30(6): 473-507.

Steinmetz, J. (2001). Computers and Squeak as Environments for Learning. Squeak: Open
Personal Computing and Multimedia. M. Guzdial and K. Rose, Prentice Hall: 453-
482.

Tanaka, J. (1999). The Perfect Search. Newsweek. 134:

71, September 27 1999.

Teitelman, W. and Masinter, L. (1981). “The Interlisp Programming Environment.” Com-
puter 14(4): 25-34.

Thimbleby, H., Cockburn, A. and Jones, S. (1992). HyperCard: An Object-Oriented Dis-
appointment. Building Interactive Systems: Architectures and Tools. P. Gray and R.
Took. New York, Springer-Verlag: 35-55.

Thomas, J. and Gould, J. (1975). A Psychological Study of Query by Example. National
Computer Conference. Anaheim, CA, AFIPS. 44: 439-445.

Turtle, H. (1994). Natural Language vs. Boolean Query Evaluation: A Comparison of
Retrieval Performance. Proceedings of the Seventeenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval: 212-
220.

Wason, P.C. (1959). “The Processing of Positive and Negative Information.” Quarterly
Journal of Experimental Psychology 11.

Webgain (2001). JavaCC - The Java Parser Generator, http://www.webgain.com/products/
metamata/java_doc.html.

Weinberg, G.M. (1971). The Psychology of Computer Programming. New York, Van Nos-
trand Reinhold Company.

190 A Programming System for Children that is Designed for Usability

References

Wilcox, E. and Burnett, M. Programming a Single Digit LED in Forms/3

http://
www.cs.orst.edu/~burnett/Forms3/LED.html.

Young, D. and Shneiderman, B. (1993). “A Graphical Filter/Flow Representation of Bool-
ean Queries: A Prototype Implementation and Evaluation.” Journal of American
Society for Information Science 44(6): 327-339.

This document contains only Chapter 1 of the thesis.
For citation, please refer to the full thesis document, which is available at:

http://www.cs.cmu.edu/~pane/thesis

