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Abstract

A programming system is the user interface between the programmer and the computer.
Programming is a notoriously difficult activity, and some of this difficulty can be attributed
to the user interface as opposed to other factors. Historically, the designs of programming

languages and tools have not emphasized usability.

This thesis describes a new process for designing programming systems where HCI knowl-
edge, principles and methods play an important role in all design decisions. The process
began with an exhaustive review of three decades of research and observations about the
difficulties encountered by beginner programmers. This material was catalogued and orga-
nized for this project as well as for the benefit of other future language designers. Where
guestions remained unanswered, new studies were designed and conducted, to examine
how beginners naturally think about and express problem solutions. These studies revealed
ways that current popular programming languages fail to support the natural abilities of

beginners.

All of this information was then used to design HANDS, a new programming system for
children. HANDS is an event-based system featuring a concrete model for computation
based on concepts that are familiar to non-programmers. HANDS provides queries and
aggregate operations to match the way non-programmers express problem solutions, and
includes domain-specific features to facilitate the creation of interactive animations and
simulations. In user tests, children using the HANDS system performed significantly better
than children using a version of the system that lacked several of these features. This is evi-
dence that the process described here had a positive impact on the design of HANDS, and

could have a similar impact on other new programming language designs.

The contributions of this thesis include a survey of the knowledge about beginner program-
mers that is organized for programming system designers, empirical evidence about how
non-programmers express problem solutions, the HANDS programming system for chil-
dren, a new model of computation that is concrete and based on familiar concepts, an eval-
uation of the effectiveness of key features of HANDS, and a case study of a new user-

centered design process for creating programming systems.
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CHAPTER 1 Introduction

Only a very small proportion of users can program their computers. However, most could
benefit in some way from this powerful capability, whether to customize and interconnect
their existing applications or to create new ones. As with writing, “the significance of pro-
gramming derives not only from the carefully crafted works of a few professionals, but also
from the casual jottings of ordinary people” [diSessa 1986, p. 859]. For ordinary people,
understandability, familiarity, ease of performing small tasks, and user interface are more
important features in a programming system than technical objectives such as mathematical

elegance, efficiency, verifiability, or uniformity.

Many of the people who try to learn to program are quickly discouraged because it is very
difficult. In fact, it is even challenging for more experienced people who have received
formal training. Why is programming so difficult? Part of the problem is that it requires
problem solving skills and great precision, but this does not fully explain the difficulty.
Even when a person can envision a viable detailed solution to a programming problem, it
is often very hard to express the solution correctly in the form required by the computer.

This is a user-interface problem that has long been recognized but neglected.

A Programming System for Children that is Designed for Usability 1
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1.1 Historical Context

In 1971, Gerald Weinberg publish&tde Psychology of Computer Programmiwngh the

stated goal to trigger a new field that studies computer programming as a human activity
[Weinberg 1971]. At the time, there was little scientific literature about the human aspect
of programming, and most of it appeared in technical reports and other obscure publica-
tions. The field began to grow quickly after Allen Newell addressed the third B8BM
Conference on Human Factors in Computing Systantslater published his comments in

an article with Stuart Card:

Millions for compilers, but hardly a penny for understanding
human programming language use. Now, programming lan-
guages are obviously symmetrical, the computer on one side,
the programmer on the other. In an appropriate science of
computer languages, one would expect that half the effort
would be on the computer side, understanding how to trans-
late the languages into executable form, and half on the
human side, understanding how to design languages that are
easy or productive to use. Yet we do not even have an enu-
meration of all of the psychological functions programming
languages serve for the user. Of course, there is lots of pro-
gramming languageesign but it comes from computer sci-
entists. And though technical papers on languages contain
many appeals to ease of use and learning, they patently con-
tain almost no psychological evidence nor any appeal to psy-
chological science. [Newell 1985, p. 212]

Soon two workshop series were started, which have become focal points for research in the
usability of programming languages: tRsychology of Programming Interest Group
(PPIG) explores the cognitive aspects of computer programming; achfiigcal Studies

of ProgrammergESP) group focuses on empirical studies of beginners and experts.

Over the past three decades, many researchers have worked to understand the cognitive
demands of programming and the sources of difficulty in existing programming languages
and tools. In addition to the proceedings of the PPIG and ESP workshop series, relevant
work has appeared in theternational Journal of Human-Computer StudfEsmerly
International Journal of Man-Machine Studjethe proceedings of the ACRIHI confer-

ence and the IEEHBuman-Centric Computinformerly Visual Languagésconference,
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and the bookStudying the Novice Programm&oloway 1989b]Psychology of Pro-
gramming[Hoc 1990a], andoftware Design: Cognitive AspefBétienne 2001].

1.2A User Centered Design Pocess ér Programming Systems
It is disappointing that the knowledge gathered over the past thirty years has had so little

influence on the designs of new programming systems (in this document, the term pro-
gramming system is used to encompass the programming language as well as the tools for
viewing, editing, debugging and running programs). In order to help remedy this, | have
organized the prior work that studied beginner programmers so that it might be readily
included among the guidelines and strategies that are used by future programming system
designers. Generally, language designers have focused on technical goals for their systems,
such as to build systems that are scalable, efficient, reusable, provably correct, or that have
mathematical elegance. When they face a design decision that is not determined by these
criteria, they usually choose a solution that is similar to existing languages or one that

appeals to their intuition. Usability has rarely been adopted as a formal objective.

| believe that usability should always be included among the criteria that are considered
during the design of programming systems. Depending on the constraints of a particular
project and target audience, usability may be given more or less weight. However, it is

always worth considering for at least those decisions that are not already determined by

other design criteria

In this thesis, | exemplify a new design process for programming systems, where usability

is treated as a first-class objective:

1. Identify the taget audienceand the domain, that is, the group of people who will be

using the system and the kinds of problemy thidl be working on.

2. Undeistand the taget audienceboth the problems tlgeencounter and theisting rec-
ommendations on koto support their wrk. This includes anwareness of general
HCI principles as well as prioravk in the psychology of programming and empirical
studiesWhen issues or questions arise that are not answered by thegrkpcanduct

new studies to xamine them.

3. Design the ne systenbased on this information.

A Programming System for Children that is Designed for Usability 3
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4. Evaluate the systeto measure its success, and understaypcham problems that the
users hee. If necessaryedesign the system based on thieuation, and then reval-

uate it.

In this design process, all of the prior knowledge about the human aspects of programming
are considered, and the strategy for addressing any unanswered questions is to conduct user
studies to obtain design guidance and to assess prototypes. For my new programming
system for children, | adopted an extreme position by giving usability precedence over

other objectives.

While my focus has been on beginner programmers, | believe this approach also applies to
experts, and that it can have positive impacts on training and productivity as well as the reli-
ability of professional software systems. Improving the programming systems used by
experts will also affect beginners, because although these systems may not be the best
choices for learning to program, they are often chosen because they are widely available
and familiar to mentors. Everyone would benefit if these programming languages and tools

were more usable.

1.3 Motivation

The goal of this thesis is tmablemore beginners to learn to program for their personal
purposes, with minimal training. There is no explicit goal to teach any particular computer
science concepts, such as recursion, unless the concept is essential to the users achieving
their goals. There is also no requirement for the new programming language produced by
this work to match existing programming languages. Ideally, the new system will be gen-
eral and powerful enough that many people will achieve their objectives without having to
move to other new languages. Hopefully, the need to learn some of the harder computer
science concepts can be deferred or eliminated. For those who do move on to other lan-
guages or even to become computer scientists, their early success with this first language

should ease their difficulties in learning the harder computer science concepts.

1.4Thesis Statement

The thesis statement for this work is:

4 A Programming System for Children that is Designed for Usability
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this user-centered design process, incorporating principles
from human-computer interaction, psychology of program-
ming, and empirical studies, will result in a unique program-
ming system that is easier to learn and use than more
conventional programming systems.

1.5TargetAudience and Domain

The target audience for my new programming system is children in fifth grade (about ten
years old) or older. | chose to build a system for children because they often have an interest
in learning how to program, but can be quickly discouraged when they try. Their goals are
creative and ambitious — they would like to make programs that are similar to the applica-
tions they use, such as games and simulations. These applications are graphically rich and
highly interactive, unlike the first programs they are likely to create in many professional
programming systems, such as to display “hello world” on the screen. My goal is to provide
an easy entry into creating these interactive graphical programs. However, to the extent
possible, | also tried to create a general purpose language that scales well, so that it is not

inherently limited to creating toy programs.

1.6 Understanding theTargetAudience

In addition to general design principles that are applicable to all users, there is a wealth of
information available about how beginner programmers work and the problems they
encounter. This section summarizes the prior work and briefly describes the new studies |

conducted to examine additional questions.

1.6.1 General Design Principles
The field ofHuman Computer InteractiofiHCI) has general principles and heuristics that

can be applied to programming system defNjalsen 1994]

» simple and natural dialog — user ingarés should be simp#fil, and should match the
users task in as natural aay as possible, such that the mapping between computer

concepts and user concepts becomes straiglafdrw

» speak the uses’language — the terminology in user irdeds should be based on the
users language, instead of using system-oriented terms or attaching non-standard

meanings todmiliar words.

A Programming System for Children that is Designed for Usability 5
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* minimize user memory load — the system should takr the lirden of memory from

the user
» consisteng — the same command or action shouldsgts hae the same &dct.

» feedback — the system should continuously inform the user about what it is doing and
how it is interpreting the usex’input.
» clearly marled «its — the system shouldfef the user an easyay out of as mansit-

uations as possible, includingays to undo.

» shortcuts — the system should reakpossible forperienced users to perform fre-

guently used operations quickly

» good error messages — the system should report errors politely in clear langoigge, a
obscure codes, use precise rather ttzayug or generakplanations, and include con-

structve help for solving the problem.

» prevent errors — where possible, the user iatsgfshould be structured teoad error

situations.

* help and documentation — the help system and documentation shouttk@auick

way for users to fid task-specié information when theare haing a problem.

Many of these principles are routinely violated by programming systems — several exam-

ples are presented @hapter 2

When designing and evaluating programming systems, it is also useful to consider the more
specific evaluation criteria in tl@ognitive Dimensions of Notatioframework (Cognitive
Dimensions, for short) [Blackwell 2000, Green 1996]:

* viscosity — the system should not resist change; it should not requiyeusemactions

to accomplish one small goal.

* visibility — the information needed by the programmer gtarticular time should be

visible or \ery easy to access.

* premature commitment — the system shouldfo@te the user to go about the job in a

particular order, or make a decision before the needed information is available

* hidden dependencies — important links between entities should be visible.

6 A Programming System for Children that is Designed for Usability
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* role expressveness — the purpose of an entity should be readily apparent.
 error pronenessthe notation should protectagst slips and errors.

» closeness of mapping — the systemwperations should closely match theywasers

think about problem solutions.

» secondary notation — the system shouldmative programmer to communicate addi-

tional information with comments, typograptayout, etc.
» progressie evaluation — the system should permit users to test partial programs.

» diffuseness — small goals should not requiteaerdinarily long solutions or lge

amounts of screen space.

» provisionality —the system should allothe user to si¢ch out uncertain parts of their

solution.

» hard mental operations — none of the systasperations should require great mental

effort to use.
» consisteng — similar notations should mean similar things, and versa:

» abstraction management — the system shouldge@ vay to define nev facilities or
terms that aller the user toxgress ideas more clearly or succingiyt it should not

force users to use this capability right from the start.

These factors are sometimes in conflict, so improving the system along one dimension can
result in reduced performance on another. Tradeoffs are necessary, and in making these

tradeoffs it is useful to consider cognitive models and observations from empirical studies.

1.6.2 Obsevations about Existing Piogramming Languages

The principles osimple and natural dialog, speak the user’s languaggcloseness of
mappingare reinforced by cognitive models that define programming as a process where
the user translates a mental plan into one that is compatible with the computer [Hoc 1990b].
The language should minimize the difficulty of this translation by providing operators that
match those in the plan, including any that may be specific to the topic or domain of the
program. “The closer the programming world is to the problem world, the easier the prob-

lem-solving ought to be.... Conventional textual languages are a long way from that goal”

A Programming System for Children that is Designed for Usability 7
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[Green 1996, p. 146]. Hix & Hartson describe the general usability guideluse togni-

tive directnesgHix 1993, p. 38] to “minimize the mental transformations that a user must
make. Even small cognitive transformations by a user take effort away from the intended
task.” If the language does not provide these high-level operators, programmers have to
assemble lower-level primitives to achieve their goals. This synthesis is one of the greatest

cognitive barriers to programming [Lewis 1987].

Programmers are often required to think about algorithms and data in ways that are very
different than the ways they already think about them in other corff@xtsxample, a typ-
ical C program to compute the sum of a list of numbers includes three kinds of parentheses

and three kinds of assignment operators in five lines of code:

sum = 0;

for (i=0; i<numlitems; i++) {
sum += itemsi;

}

return sum;

In contrast, this can be done in a spreadsheet with a single line of code usungdiper-

ator [Green 1996]The mismatch between the way a programmer thinks about a solution
and the way it must be expressed in the programming language makes it more difficult not
only for beginners to learn how to program, but also for people to carry out their program-
ming tasks even after they become more experienced. One of the most common bugs
among professional programmers using C and C++ is the accidental use of “=" (assign-
ment) instead of “==" (equality test). This mistake is easy to make and difficult to find, not
only because of typographic similarity, but also because “=" operator does indeed mean

equality in other contexts such as mathematics.

Soloway, Bonar & Erlich [Soloway 1989a] found that the looping control structures pro-
vided by modern languages do not match the natural strategies that most people bring to
the programming task. Furthermore, when novices are stumped they try to transfer their
knowledge of natural language to the programming task. This refseiits in errors

because the programming language defines these constructs in an incompatible way [Bonar

1989]. For exampldhenis interpreted aafterwardsinstead ofn these conditions

8 A Programming System for Children that is Designed for Usability
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1.6.3Naturalness

There are two ways to improve closeness of mapping. One is to teach people to think more
like computers; the other is to make the programming system’s operations match how users
think. The latter approach is preferred in this thesis. A primary goal of my programming
system is to support tmaturalways that non-programmers think about problem solutions,
instead of making them learn new and often unnatural ways to accomplish their objectives.
In this context, natural meaegpected or acceptetf people have a viable approach to
solving problems, the ideal programming system would support that solution directly,
without requiring the programmer to learn anything new or perform additional work in

translating their ideas into program code.

By this definition, naturalness is not universal for all humans. People from different back-
grounds and cultures, or from different points in history, are likely to bring different expec-
tations and methods to the programming task. Therefore, a programming system that is
designed to be natural for a particular target audience is unlikely to be universally optimal.
This is why identifying the target audience is an intrinsic part of the design process, and
why the process itself is important. It will have to be applied over and over again, in order
to best support the particular characteristics of the people who will use each new program-

ming system.

Striving for naturalness does not necessarily imply that the programming language should
use natural language. Programming languages that have adopted natural-language-like syn-
taxes, such as Cobol [Sammet 1981] and HyperTalk [Goodman 1987], still have many
usability problems. For exampldyperTalk often violates the principle of consistency
[Thimbleby 1992] There are also many ambiguities in natural language that are resolved

by humans through shared context and cooperative conversation [Grice 1975].

Novices attempt to enter into a human-like discourse with the computer, but programming
languages systematically violate human conversational maxims because the computer
cannot infer from context or enter into a clarification dialog [Pea 1986]. The use of natural
language may compound this problem by making it more difficult for the user to under-

stand the limits of the computer’s intelligence [Nardi 1993].

A Programming System for Children that is Designed for Usability 9



Introduction

However, these arguments do not imply that the algorithms and data structures should not
be close to the ways people think about the problem. In fact, leveraging users’ natural-lan-
guage-like knowledge in a more formalized syntax can be an effective strategy for design-

ing end-user-programming languages [Bruckman 1999].

There are additional motivations for why a more natural programming language might be
better. A programming language is a type of user interface, and user interfaces in general
are recommended to batural so they are easier to learn and use, and will result in fewer
errors. Naturalness is closely related to the concept of directness which, agipartof
manipulation is a key principle in making user interfaces easier to use. Hutchins, Hollan

& Norman describéirectnesss the distance between one’s goals and the actions required
by the system to achieve those goals [Hutchins 1986]. Reducing this distance makes sys-
tems more direct, and therefore easier to learn. User interface designers and researchers
have been promoting directness at least since Shneiderman identified the concept [Shnei-

derman 1983], but it has not been a consideration in most programming language designs.

1.6.4 Studies of Naturalness in Fxblem Solving

This thesis presents two studies examining the language and structure that children and
adults naturally use before they have been exposed to progran@hiagtér 3. In these

studies, | gave programming tasks to non-programmers and they solved these problems by
writing and sketching their answers on paper. The tasks covered a broad set of essential pro-
gramming techniques and concepts, such as control structures, storage and manipulation of
data, arithmetic, Boolean logic, searching and sorting, animation, interactions among
objects, etc. In posing the problems, | was careful to minimize the risk that my materials

would influence the answers, so | used pictures and very terse captions.
Some observations from these studies were:

* An event-based or rule-based structu@sweften used, where actions werestaln

response tovents. fer example, “when pacman loses all higels, its game eer”

» Aggregate operators (acting on a set of objects all at once) were used much more often
than iterating through the set and acting on the objectadiodily. For example,

“Move everyone belar the 5th place den by oné.

10 A Programming System for Children that is Designed for Usability
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» Participants did not construct compldata structures and #&se them, lt instead
performed content-based queries to obtain the necessary data when neredeanF
ple, instead of maintaining a list of monsters and iterating through the list checking the

color of each item, thewould say “all of the blue monstérs.

* A natural language styleas used for arithmetixpressions. & example, “add 100 to

score€.

» Objects werexpected to automatically remember their state (such as motion), and the
participants only mentioned changes in this staie ekample, “if pacman hits aall,

he stops.

» Operations were more consistent with list data structures, rather than aoregarf-
ple, the participants did not create space before inserting abyject into the middle

of a list.

» Participants rarely used Booleaxpeessions, lt when thg did they were likely to
make errorsThat is, their gpressions were not correct if interpreted according to the

rules of Boolean logic in most programming languages.

» Participants often dre pictures to s&tch outthe layout of the program, but resorted to

text to describe actions and behaviors.

1.6.5Study of Methods to Specify Queries

Because content-based queries were prevalent in non-programmers’ problem solutions, |
began to explore how this might be supported in a programming language. Queries are usu-
ally specified with Boolean expressions, and the accurate formulation of Boolean expres-
sions has been a notorious problem in programming languages, as well as other areas such
as database query tools [Hildreth 1988, Hoc 1989]. In reviewing prior research | found that
there are few prescriptions for how to solve this problem effectively. For example, prior
work suggests avoiding the use of the Boolean keywsiI3 OR, andNOT [Greene

1990, McQuire 1995, Michard 1982], but does not recommend a suitable replacement

guery language.

Therefore | conducted a new study to examine the ways untrained children and adults nat-

urally express and interpret queries, and to test a new tabular query form that | designed
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calledmatch formgshown inFigure 1-). This study confirmed that relying on the Boolean
keywords, as well as parentheses for grouping, would result in poor usability. Textual alter-
natives that avoided the Boolean keywords were not reliably better. However, the match

forms were successful.

objects that match objects that match
| blue | circle
not sguare | not green

Figure 1-1.Match forms gpressing the query: (blue and not square) or (circle and not green)

Each match form contains a vertical list of slots. Conjunction is specified by placing terms
into these slots, one term per slot. Negation is performed by prefacing a term W®The
operator, and disjunction is specified by placing additional match forms adjacent to the first
one. This design avoids the need to nam&thB andOR operators, provides a clear dis-
tinction between conjunction and disjunction, and makes grouping explicit. Match forms
are suitable for incorporation into programming systems. When compared with textual
Boolean expressions, users performed significantly better when they expressed their que-
ries using match forms. When interpreting already-written queries, performance was about
equal using either languageéhapter 4contains full details about match forms and this

study, as well as an application of this work to the search interface for thele@lirikib-

liography.

1.6.6 Model of Computation

One of the biggest challenges for new programmers is to gain an accurate understanding of
how computation takes place. Traditionally, programming is described to beginners in
completely unfamiliar terms, often based on the von Neumann model, which has no real-
world counterpart [du Boulay 1989a, du Boulay 1989b]. Beginners must learn, for exam-
ple, that the program follows special rules of control flow for procedure calls and returns.

There are complex rules that govern the lifetimes of variables and their scopes. Variables
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may not exist at all when the program is not running, and during execution they are usually
invisible, forcing the programmer to use print statements or debuggers to inspect them. This
violates the principle of visibility, and contributes to a general problem of memory over-
load [Anderson 1985, Davies 1993].

Usability could be enhanced by providing a different model of computation that uses con-
crete and familiar terms [Mayer 1989, Smith 1994]. Using a different model of computation
can have broad implications beyond beginners, because the model influences, and perhaps

limits, how experienced programmers think about and describe computation [Stein 1999].

Sectionl.7.lintroduces the new model of computation | invented to address this problem.

1.6.7Visual vs.Textual

In visual languages, graphics replace some or all of the text in specifying programs. Propo-
nents of visual programming languages often argue that reducing or eliminating the text in
programming will improve usability [Smith 1994]. However, much of the underlying ratio-
nale for this expectation is suspect [Blackwell 1996]. User studies have shown mixed
results on the superiority of visual languages over text (e.g. [Green 1992]), and the advan-
tage of visual languages tends to diminish on larger tasks. It is useful to note that one of the
most successful end-user programming systems to date is the spreadsheet, which is mostly
textual [Nardi 1993].

My new programming system supports the hybrid graphical-textual approach used by the
participants in my studies, and relies on the programming environment to alleviate some of
the difficulties of textual languages. For example, during program entry, context-sensitive
menus like those in Microsoft’s Visual Studio can make it easier to know what choices are
available and to help the user to enter the program correctly. This support could be aug-
mented with a drag-and-drop syntax-directed editor, as seen in Squeak’s eToys interface
[Steinmetz 2001] and other systems. The system can also provide visual representations for

textual elements that are difficult, such as the match forms mentioSattionl.6.5

1.7The HANDS Programming System Design
All of these observations have influenced the design of my new programming system,

which is called HANDS (Human-centered Advances for the Novice Development of Soft-
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ware). HANDS uses an event-based language that features a new concrete model for com-
putation, provides queries and aggregate operators that match the way non-programmers
express problem solutions, has high-visibility of program data, and includes domain-spe-
cific features for the creation of interactive animations and simulations. The HANDS

system is detailed iG@hapter 5

1.7.1Computational Model

In HANDS, the computation is represented as an agent named Handy, sitting at a table
manipulating a set of cards (déigure 1-3. All of the data in the system is stored on these
cards, which are global, persistent and visible on the table. Each card has a unique name,
and an unlimited set of name-value pairs, called properties. The program itself is stored in
Handy’sthought bubbleTo emphasize the limited intelligence of the system, Handy is por-
trayed as an animal — like a dog that knows a few commands — instead of a person or a robot

that could be interpreted as being very intelligent.

=] board

The bee with the most nectar is: Stripes
He has this much nectar: 8

All the bees have collected: 45

777
178

bee
bumbleb.gif

Figure 1-2. The HANDS system portrays the components of a program on a roundMbtida is storec
on cards, and the programmer inserts code into Hartldgught bbble at the upper left corn&hen the
play kutton is pressed, Handydias responding tovents by manipulating cards according to the
instructions in the thoughubble.This is described in more detail Ghapters.
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1.7.2 Pogramming Style and Model of Execution

HANDS is event-based, the programming style that most closely matches the problem
solutions in my studies. A program is a collection of event handlers that are automatically
called by the system when a matching event occurs. Inside an event handler, the program-

mer inserts the code Handy should execute in response to the event.

1.7.3Aggregate Operations

In my studies, | observed that the participants used aggregate operators, manipulating
whole sets of objects in one statement rather than iterating and acting on them individually.
Many languages force users to perform iteration in situations where aggregate operations
could accomplish the task more easily [Miller 1981]. Requiring users to translate a high-
level aggregate operation into a lower-level iterative process violates the princiloleesf

ness of mapping

HANDS has full support for aggregate operations. All operators can accept lists as well as

singletons as operands, or even one of each. For example,
e 1+1 evaluatest@

e 1+(1,2,3) evaluates t@,3,4

e (1,23)+1 evaluates t@,3,4

e (1,2,3) +(2,3,4) evaluates t@®,5,7

1.7.4 Queries

In my studies, | observed that users do not maintain and traverse data structures. Instead,
they perform queries to assemble lists of objects on demand. For example, they say “all of
the blue monsters.” HANDS provides a query mechanism to support this. The query mech-

anism searches all of the cards for the ones matching the programmer’s criteria.

Queries begin with the woall. If a query contains a single value, it returns all of the cards
that have that value in any propeiffygure 1-3contains cards representing three flowers

and a bee to help illustrate the following queries.

* all flowers evaluates tmrchid, rose, tulip
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[rose: : oy Elerenid i | ] bumble 550
name | waluoe narme | wvalue name | wvalue narme | walue
cardname |rose cardname |tulip cardname |orchid cardname  |bumble
x 208 x 350 . x 636
Y an W an W a0 W a0
group flower qroup flower qroup flower qroup bee
nectar 100 nectar 150 nectar 75 nectar 0

Figure 1-3.When the systenvaluates the quersf flowers it returnsrose, tulip, orchid

* allbees evaluates tdoumble
» allsnakes  evaluates to the empty list

HANDS permits more complex queries to be specified with traditional Boolean expres-
sions, however the intention is to eventually incorporate match forms into the system as an

option for specifying and displaying queries.

Queries and aggregate operations work in tandem to permit the programmer to concisely

express actions that would require iteration in most languages. For example,

» set the nectar of all flowers to O

1.7.5 Domain-Specifi Support

HANDS has domain-specific features that enable programmers to easily create highly-
interactive graphical programs. For example, the system’s suite of events directly supports
this class of programs. The system automatically detects collisions among objects and gen-
erates events to report them to the programmer. It also generates events in response to input
from the user via the keyboard and mouse. It is easy to create graphical objects and text on

the screen, and animation can be accomplished without any programming.

1.8 Evwaluation

To examine the effectiveness of three key features of HAND& es, aggregate opera-
tions, and data visibilityl conducted a study comparing the system with a limited version
that lacks these features. In the limited version, programmers could achieve the same

results but had to use more traditional programming techniques. Fifth-grade children were
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able to learn the HANDS system during a three-hour session, and then use it to solve pro-
gramming problems. Children using the full-featured HANDS system performed signifi-
cantly better than their peers who used the reduced-feature version. This is evidence that
this set of features improves usability over the typical set of features in programming sys-

tems.

In a separate informal study, a high-school student compared hands with Stagecast, a com-
mercial programming environment for children [Earhart 1999]. He implemented a game in
both systems, and concluded that HANDS was easier to use, enabled him to implement
more features, and required fewer lines of code. In addition, several more experienced pro-
grammers have used HANDS to implement a broad variety of programs to explore its range

of capabilities.

Evaluation of the HANDS system is detaileddhapter 6

1.9 Contributions

The contributions of this thesis are:

a case study of a wedesign pocesdor creating programming systems, where usabil-

ity is a frst class objecte;

» theHANDS pogramming systerfor children, which has a unique set of features due to
its usercentered design, geral of which were demonstrated to be more usable than

those found in typical programming systems;

» a nev model of computatiqror way of thinking about programs, that is concrete and
based ondmiliar concepts, unléthe traditionaluring machine oren Neumann

machine models;

* ageneral-purpogarogramming languge that ofers database-style access to the pro-

gram’ data, and in which all operators can be applied to singletons and lists;

* matd forms a talular method for ¥pressing queries thatas compared to xeual

expressions and st to improve bginners’performance;

» a nev query interfacdor theHCI Bibliograpty (www.hcibiborg), based on match

forms, which reduces user errors in comparison to the oldantesrf

A Programming System for Children that is Designed for Usability 17



Introduction

» empirical &idenceabout hav non-programmersx@ress problem solutions, which can
be used to help designers generate and select programming system featuresdbat pro
a close mapping between those problem solutions and Xpeession in program

code;

» empirical sidencecharacterizing the kinds of errors made byperienced users of

textual Boolean ®pressions;

* auser studylemonstrating the fefctiveness of queries, aggege operations, and high-
visibility of data, in comparison to the typical features sets of programming systems;

and,

» abroad survg of the prior vork on bginner programmers, ganized in a form that can

be used by other programming system designers (appesppamdixC).

1.10 Owerview of Thesis

The remainder of this thesis is organized as foll@&pter Aescribes the prior empirical
work on beginner programmers as well as other programming systems for beginners and
children;Chapter 3escribes the first two studies examining the language and structure in
non-programmers solutions to programming problédhsipter Aescribes the third study,
examining methods for specifying queries, and provides details about matchG@twamps;

ter 5details the design of the HANDS systeiiapter 6describes a fourth study, to eval-
uate features of HANDS, as well as other less formal evaluavagter Mdiscusses the
implications of this work and some ideas for future work; @hepter 8ives some con-

cluding remarks.

Supplemental materials are contained in appendiggsendixA contains a formal speci-
fication of the HANDS language syntakppendixB contains some example programs
implemented in HANDSAppendixC contains the full text of my technical report survey-
ing usability issues in programming systems for begindggendixD contains the mate-
rials used in the first studyppendixE contains the materials used in the second study;
AppendixF contains the materials used in the third study;AmoendixG contains the

materials used in the fourth study.
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This document contains only Chapter 1 of the thesis.
For citation, please efer to the full thesis document, which is\ailable at:
http://www .cs.cmu.edu/~pane/thesis
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