

Abstract

The accurate formulation of boolean expressions is a
notorious problem in programming languages and data-
base query tools. This paper studies the ways that untrained
users naturally express and interpret queries, revealing
some of the underlying reasons why this task is so difficult.
Among the study's findings are: people interpret the word
AND to mean either conjunction or disjunction depending
on context, the scope to which they attribute the word NOT
depends on whether the subsequent operator is AND or OR,
and they often ignore parenthesis. Therefore, relying on
these words and symbols for query formulation will result
in poor usability. A tabular query form is proposed that
avoids the need to name the operators, provides a clear dis-
tinction between conjunction and disjunction, and makes
grouping more explicit. Comparing the tabular language
with textual boolean expressions, the study finds that
untrained users perform better when they express their que-
ries in the tabular language, and about equally well when
interpreting queries written in either language. We con-
clude that systems may benefit by adopting a tabular nota-
tion for query formulation.

1. Introduction

We are applying human-computer interaction techniques
to the design of new programming language features.
Design decisions are resolved by looking to prior research
for warnings about potential problems, suggestions for
design alternatives, and guidance in selecting among vari-
ous potential solutions. When necessary, we perform new
user studies to investigate questions that are not fully
addressed by prior research.

We are currently using this method to design a primarily
textual programming system for children to use in creating
interactive simulations and games. One of the challenges of
this effort is to craft the features of the system to address
the problems observed in the prior research. While this is
straightforward in some cases, it is quite difficult in others.

One of the more notorious problem areas in program-

ming languages is the accurate specification of boolean
expressions [1]. In addition to programming languages, this
same problem also appears in the task of formulating que-
ries for common end-user activities such as web searching,
library catalog searching, and other database retrieval tasks
[2]. Despite the great difficulty that users have demon-
strated with using the boolean operators

AND

,

OR

, and

NOT

 to construct these expressions, no universally better
alternatives have been discovered, so most programming
languages continue to rely on them, including many visual
and forms-based languages (e.g., [3, 4]). Early web search
engines also used these operators, although many have
turned to less expressive query languages (for example, the
plus and minus unary operators for inclusion and exclu-
sion).

Newsweek

 reports that even with these simplifica-
tions, most web users are dissatisfied with search engines,
and less than 6% manage to use these operators in their
searches [5].

The problems with boolean queries are exemplified in
studies of non-programmers writing solutions to program-
ming problems in their own words [6, 7]. For example, in
these studies it was very common for participants to use the
word

AND

 where the word

OR

 is the correct boolean opera-
tor. Instead of saying something like “count the cars with
license plates from Georgia

or

 Louisiana” they would say
“count the cars with license plates from Georgia

and

 Loui-
siana.” The latter version refers to an empty set of license
plates when interpreted according to boolean logic, but in
English it is usually interpreted to mean the union of the
two states’ license plates.

1

 It was also noted that the words

OR

 and

NOT

 rarely appeared, suggesting that boolean
expressions are not a natural way to formulate these state-
ments. The participants often used other words and sen-
tence structures to specify their queries accurately. For
example, rather than saying “if I get up late and I’m not
very hungry I skip breakfast,” they might say “if I get up
late I skip breakfast unless I’m very hungry.” This latter
construction avoids both the

AND

 and

NOT

 operators.
In the new study reported here, we investigated several

of these alternative formulations to see whether they were
more accurate than traditional boolean expressions. In addi-

1. This ambiguity in how to interpret the word that means “and” also
appears in many other natural languages, according to our informal poll.

Tabular and Textual Methods for Selecting Objects from a Group

John F. Pane

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268 8078
pane+vl2000@cs.cmu.edu

Brad A. Myers

Human Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268 5150
bam+@cs.cmu.edu

Appeared in

Proceedings of VL 2000: IEEE International Symposium on Visual Languages

. Seattle, WA: IEEE Computer Society, September 10-13 2000, pp. 157-164.

tion, because prior research suggests that non-textual query
languages may be more effective than textual syntaxes [8],
the study compared these textual alternatives against a pro-
posed new query language that uses tabular forms that
would integrate well into a primarily textual language.

The study used a grid of nine colored shapes, where a
subset of the shapes could be marked. The participants were
given two kinds of problems:

code generation

 problems,
where some shapes were already marked and they had to
formulate a query to select them; and

code interpretation

problems, where they were shown a query and had to mark
the shapes selected by the query. They solved all of these
problems twice, once using purely textual queries, and once
using the proposed tabular forms.

The results suggest that a tabular language for specifying
boolean expressions can improve the usability of a pro-
gramming or query language. On code generation tasks, the
participants performed significantly better using the tabular
form, while on code interpretation tasks they performed
about equally in the textual and tabular conditions. The
study also uncovered systematic patterns in the ways partic-
ipants interpreted boolean expressions, which contradict the
typical rules of evaluation used by programming languages.
These observations help to explain some of the underlying
reasons why boolean expressions are so difficult for people
to use accurately, and suggest that refining the vocabulary
and rules of evaluation might improve the learnability and
usability of textual query languages. A general awareness
of these contradictions can help designers of future query
systems adhere to one of the basic human-computer inter-
action principles: to speak the user’s language [9].

2. Related work

There is a large body of prior research that identifies
usability issues in the design of programming languages,
and can provide a basis for making design decisions. For
the language we are currently designing for children, a sur-
vey of the prior research that applies to beginners is espe-
cially relevant [10].

Many researchers have noted that boolean query lan-
guages using the

AND

,

OR

, and

NOT

 operators are not very
effective in programming languages or database retrieval
(e.g. [1, 2]). Several researchers have noted that the com-
mon usage of these operators in natural language causes
errors in queries, such as the substitution of

AND

 for

OR

[11, 12]. It has also been noted that the intended scope of
the

NOT

 operator is ambiguous in natural language [13].
The difficulties of boolean expressions are intensified

when several operators must be combined to form the query
[14]. Parenthesis improved performance in that study, but
other studies have shown that beginners have difficulty with
parentheses, especially if they are nested [11, 12].

Replacing the boolean query language with a different
subset of natural language, using other words for the opera-
tors, is still likely to be inadequate [15]. Many systems that
permit unrestricted natural language queries have been
shown to be effective for information retrieval tasks (e.g.

[16]), but studies of use of natural language for program-
ming are less common (e.g. [17, 18]).

These problems have led researchers to develop graphi-
cal interfaces for queries. For example, truth tables and
Venn diagrams have been shown to be effective for specify-
ing simple queries [12, 19, 20]. Another system used tiles in
a two-dimensional grid, where one dimension represented
union and the other represented intersection, although these
implicit semantics were found to be confusing [21]. A sys-
tem that used the graphical metaphor of water flowing
through filters was found to be superior to boolean expres-
sions [8], however the screen space required for this tool
might limit its effectiveness in a larger context such as a
programming language.

3. Design alternatives for Boolean queries

Our new programming language for children will be pri-
marily textual. In reviewing the prior research we found
that although the problem of boolean queries is notorious,
there are few prescriptions for how solve it effectively. For
example, the prior work suggests that we should avoid
using the words

AND

,

OR

, and

NOT

, but there is no hard
evidence that a different textual query language would be
any better.

Earlier studies have analyzed the natural language solu-
tions that non-programmers provided to solve program-
ming problems, and identified some common trends in the
ways that boolean queries were expressed [6, 7]. The
vocabulary and syntax of these solutions were uncon-
strained, so they provide insight into how people prefer to
express their answers. We speculated that a programming
language that closely matches these natural preferences
would be more usable than one that requires users to trans-
late their natural solutions into a less natural form. With this
in mind, we proposed several alternate ways to express tex-
tual queries and compared them in this study. In addition,
we also proposed a tabular format for queries.

3.1. Tabular query forms

Although some graphical query methods had been
shown to be more effective than boolean expressions, many
of them were limited to expressing very simple queries. We
wanted a solution that is fully expressive. Also, many of the
graphical systems would not integrate well into a program-
ming language, where the entire computer screen cannot be
devoted to this one subtask of the programming process.
We required a format that is compact and readable in the
context of a larger program. With these points in mind, we
designed a tabular form that is fully expressive and compat-
ible with the programming language we are developing.

Since our new programming language will represent
data on

cards

 containing attribute-value pairs, we designed
the query form to also use a card metaphor. For the pur-
poses of this study, we simplified the forms by leaving out
the attribute names, and limiting the number of terms to
three. We called these

match forms

(see Figure 1). Criteria

are placed into the slots, one term per slot. All of the terms
on a single form implicitly form a conjunction. Negation is
specified by prefacing a term with the

NOT

 operator. Dis-
junction is specified by including an additional match form
adjacent to the first one.

This two-dimensional layout is similar to the grid of tiles
described by Anick et al. [21] – one dimension implements
intersection and the other implements union. However,
match forms provide cues to help users remember which
operator uses each dimension, such as the text in the form
heading and the visual grouping. In addition, the scope of
the NOT operator is made explicit by confining it to a single
term. This proposed query language can express arbitrarily
complex queries, although some queries have to be formu-
lated in a less concise way than pure boolean expressions
would allow. To relieve this somewhat, the forms in our
proposed language will also allow an entire form to be
negated (“objects that do

not

 match ...”), but that feature is
not used in this study.

4. Hypotheses

The study tests nine hypotheses. The first seven hypothe-
ses examine various textual alternatives to traditional bool-
ean expressions, and the last two hypotheses examine the
tabular design alternative.

4.1. AND vs. nested IF

Hypothesis 1: Users will interpret nested IF statements
more accurately than a boolean expression using AND.

In the prior studies, people frequently nested an

IF

 state-
ment inside another

IF

 statement. Instead of saying, “if a
and b then ... ,” they would say, “if a then if b then” The
use of nested

IF

s may be easier to use and understand
because it avoids using the confusing

AND

 operator for
conjunction, and keeps the boolean expression simpler.

4.2. NOT vs. Unless

Hypothesis 2: Users will interpret an Unless clause
more accurately than a boolean expression that uses AND
and NOT.

In the prior studies, people often wrote a simple condi-
tional statement and then stated an exception at the end. For
example, they would write, “if a then ... unless b” This is an
alternative to “if a and not b then” In addition to avoid-
ing the

AND

 operator, the

Unless

 clause permits the user to

express a negated term without using the

NOT

 operator.

4.3. Location of Unless

Hypothesis 3: Users will interpret an Unless clause
more accurately when it appears at the very end of the
statement.

Although in English it may be natural to say “if a then ...
unless b,” in programming languages those ellipsis (...) may
be filled with a large block of code. If the

Unless

 clause will
appear at the very end of the

IF

 statement, it will be far
removed from the part of the query that is specified in the

IF

 clause. Because this violates the principle of locality
[22], it may reduce usability. While the principle of locality
could not be tested directly with our simple stimuli, we
wanted to investigate whether the

Unless

 clause is sensitive
to its placement within the query.

4.4. Context-dependent interpretation of AND

Hypothesis 4: Users will interpret AND as boolean con-
junction in some contexts but not in other contexts.

People often use

AND

 in places where the correct bool-
ean operator is

OR

. This may be because interpretation of

AND

 in the English language depends on its context. In
some cases it is interpreted to be a further restriction on a
query (boolean conjunction or set intersection), while in
other cases it is interpreted to expand the query (boolean
disjunction or set union). For example, these two statements
are usually interpreted differently: “pick up the boxes that
are blue and green” vs. “pick up the boxes that are blue and
the boxes that are green.” We attempted to demonstrate this
context-sensitive interpretation of the

AND

 operator.

4.5. Verbose AND vs. OR

Hypothesis 5: Users will interpret a verbose AND
expression as boolean disjunction more accurately than an
OR expression.

If Hypothesis 4 is confirmed, it would be useful to char-
acterize the contexts in which

AND

 is interpreted as a bool-
ean disjunction instead of conjunction. I f certain
constructions consistently lead to disjunctive interpreta-
tions, perhaps they can reliably replace the rarely-used

OR

operator. We hypothesized that a more verbose expression
that restates part of the query is more likely to induce a dis-
junctive interpretation (see the example in Section 4.4.).

4.6. Operator precedence of NOT

Hypothesis 6: Users will interpret the NOT operator
with lower precedence than the other boolean operators.

People often interpret the

NOT

 operator with lower pre-
cedence than the other boolean operators. This is opposite
to the rules of interpretation in most programming lan-
guages, where

NOT

 has higher precedence than the other
boolean operators. That is, in “not a and b,” programming
languages associate the

NOT

 tightly with the “a”, while we

Figure 1. Match forms expressing the query :
(blue and not square) or (circle and not green)

expect people to first interpret the expression “a and b” and
then apply the

NOT

 operator to the result.

4.7. Parenthesis for expression grouping

Hypothesis 7: Users will misinterpret parenthesized
expressions.

Regardless of the precedences chosen for the boolean
operators, a mechanism is required for the user to clarify or
override them. Programming languages typically use paren-
thesis to explicitly group sub-expressions, but research has
shown that beginners have difficulty with parenthesis.

4.8. Tabular vs. textual

Hypothesis 8: Users will interpret queries that use
match forms more accurately than equivalent textual que-
ries.

Hypothesis 9: Users will generate more accurate queries
using match forms than they generate using text.

We investigated the relative usability of match forms
compared with text on both interpretation and generation of
queries. We expected match forms to be effective because
they eliminate many of the problems with text that are dis-
cussed above. By avoiding the words

AND

 and

OR

, any
confusion with the meaning of these words in English is
avoided. Also, the precedence or grouping of the operators
becomes less ambiguous.

5. Method

Before beginning the study, participants filled out a
questionnaire that collected basic demographic informa-
tion. Then they answered a set of problems that were
divided into four sections. In two of the sections, the

writ-
ing

 sections, the participants generated queries to match a
result that we supplied. In the other two sections, the

read-
ing

 sections, participants interpreted queries that we sup-
plied. We label the two writing sections

WT

(writing text)
and

WF

 (writing forms), and the two reading sections

RT

(reading text) and

RF

(reading forms).
There were five

WT

 questions and five identical

WF

questions. Comparing the performance across these two
conditions is the basis for testing hypothesis 9. By random
assignment, half of the participants answered the WT ques-
tions first, and the other half answered the WF questions
first, to control for any effect of presentation order. All of
the writing questions were presented before any of the read-
ing questions, so that the queries that were displayed in the
reading sections would not bias their responses in the writ-
ing sections.

There were eleven

RT

 questions, forming the basis for
testing hypotheses 1-7. The first five hypotheses can be
evaluated by comparing relative student accuracy across a
pair of questions. Hypotheses 6 and 7 can be evaluated by
examining which of two interpretations the participants
used in answering a single question. To control for any
effect of presentation order, participants were randomly

assigned to a path through the questions. The paths were
constructed so that, for every pair of questions we intended
to compare, the number of times that either question
appeared first was balanced.

The eleven

RF

 questions were constructed by translating
the

RT

 questions into the tabular language. So, each partici-
pant answered the same question twice, once with text and
again with match forms. Comparing the performance in
these two conditions is the basis for testing hypothesis 8.
By random assignment, half the participants solved the

RF

questions first, and the other half solved the

RT

 questions
first, to control for any effect of presentation order.

There were a total of 32 questions in the four reading
and writing sections. After this, participants answered a sur-
vey of seven preference questions. Each of these showed a
query result along with two or more queries that would cor-
rectly generate the result. The participants were asked to
select the one they liked the best.

5.1. Participants

In addition to examining these hypotheses with children
who are the target audience of our programming language,
we were interested in how the results would generalize to
other ages. So, we recruited both children and adults to par-
ticipate in the study.

33 volunteers participated, 13 children (ages 10-14), and
20 adults (ages 18-46). 14 were male and 19 were female.
All but two were native speakers of English. 7 participants
reported that they had written computer programs (4 adults,
3 children). 27 reported that they had some experience with
web search engines, and 18 had used advanced searching
features (such as AND, OR, NOT, +, -, etc.). Two adults
were experienced with the SQL database query language.

5.2. Materials

The 32 problems were presented in a web browser, one
problem per web page. Each of the problem groups was
preceded by an instruction page explaining how the query
language or query forms work and introducing the format
of the exercises. The

WT

 and

WF

 instruction pages were
constructed to be as similar to each other as possible, as
were the

RT

 and

RF

 pages. The web server managed the
random assignment of participants to a path through the
problems, the presentation of the problems in the order
determined by that path, and the collection of the data
anonymously. Figure 2 contains an example problem from
each of the four problem groups.

5.3. Procedure

Participants began on the demographic questionnaire
page and proceeded at their own pace through the materials.
They were instructed to be as accurate as possible and were
told that there was no time limit. When they submitted an
answer, the server recorded it and presented them with the
next page in the sequence. The server performed some

basic syntactic checks (for example, it made sure the user
provided a boolean operator on the WT tasks, and that they
didn’t put multiple criteria into a single slot in the WF
tasks). If this check failed, an error message asked the par-
ticipant to go back and fix the answer. Any time participants
returned to a previous page to revise an answer, we
recorded all of the answers but only used the final one for
the results presented here.

Each participant’s answer was scored as correct or incor-
rect according to the following policy. Spelling errors were
tolerated, as were additional words such as

an

,

a

, or

the

.
Plural and singular forms of all words were accepted. Con-
sistent use of an incorrect color name that did

 not

 actually
appear in the study (e.g. orange for red) was tolerated. But,

any incorrect replacement of one color or shape with
another one that

did

 appear in the study (e.g. blue for green)
was marked as incorrect. Except where otherwise noted,
textual answers were interpreted the way a programming
language would interpret them. Invented shorthand nota-
tions were marked as incorrect. Redundant or overly com-
plex answers were scored as correct if they resulted in the
correct selection. Finally, on the problems where we gave
special instructions, answers that did not follow the instruc-
tions were marked as incorrect even if they resulted in a
correct selection (e.g. one of the questions in

WF

 and

WT

asked the users include the word

NOT

 in their answers).
Because we simplified the match forms for this study,

some of the problems became more complex when they

Figure 2. An example problem from each of the four problem groups (WF, WT, RF, and RT) before the
answers are filled in. The color of each object is red, green or blue on the computer screen.

WF WT

RF RT

were translated from

RT to RF. For example, the lack of a
way to negate a whole match form causes the expression
“not (a and b)” to be translated into the tabular equivalent of
“(not a) or (not b).” These question pairs were discarded
from the comparison of RT to RF in testing hypothesis 8.

6. Results

No significant differences were detected between chil-
dren and adults, between males and females, or between
programmers and non-programmers, so the results are
aggregated across all of the participants. The numbers
shown are percentages.

In evaluating hypotheses 1-5, we performed within sub-
ject comparisons on pairs of questions from the RT problem
group. Statistical significance in these comparisons was
evaluated with a non-parametric sign test. To test hypothe-
ses 6 and 7, we examined which of two interpretations par-
ticipants used in answering a single question. Statistical
significance in these comparisons was evaluated with a
binomial test. In evaluating hypotheses 8 and 9, we com-
pared pairs of questions between RT & RF and between WT
& WF, respectively. These comparisons were within sub-
ject, and statistical significance was evaluated with a non-
parametric sign test. In all of the statistical tests, p<.05 was
used as the threshold for significance.

As mentioned above, three of the RF problems were not
well-matched to the corresponding RT problems, so these
pairs were discarded in analyzing hypothesis 8. This left
eight pairs of reading problems to test hypothesis 8. All five
pairs of writing problems were used to test hypothesis 9.

The following table breaks down the individual prob-
lems in WF vs. WT, showing the percent correct. The prob-
lems are labeled with our canonical text solutions.

Hypothesis 1 is not confirmed.
Users will interpret nested IF statements more accurately than a
boolean expression using AND. % correct

Nested IF
select the objects that match red, if the objects match triangle

94

AND
select the objects that match blue and circle

85

not significant

Hypothesis 2 is not confirmed.
Users will interpret an Unless clause more accurately than a bool-
ean expression that uses AND and NOT. %correct

Unless
select the objects that match blue, unless the objects match square

97

AND NOT
select the objects that match square and not red

94

not significant

Hypothesis 3 is confirmed.
Users will interpret an Unless clause more accurately when it
appears at the very end of the statement. % correct

Unless at end
select the objects that match blue, unless the objects match square

97

Unless earlier
unless the objects match green, select the objects that match circle

76

p<.05

Hypothesis 4 is confirmed.
Users will interpret AND as boolean conjunction in some contexts
but not in other contexts.

% con-
junction

select the objects that match blue and circle 85
select the objects that match blue and the objects that match circle
(55% of the participants interpreted this as boolean disjunction)

36

p<.0001

Hypothesis 5 is disconfirmed.
Users will interpret a verbose AND expression as boolean disjunc-
tion more accurately than an OR expression.

% dis-
junction

select the objects that match blue and the objects that match circle 55
select the objects that match square or green 82

p<.05

Hypothesis 6 is disconfirmed for NOT with AND.
Users will interpret the NOT operator with lower precedence than
the other boolean operators.
select the objects that match not red and square %

precedence of NOT is higher than AND
interpreted as: (not red) and square

64

precedence of NOT is lower than AND
interpreted as: not (red and square)

9

p<.001

Hypothesis 6 is confirmed for NOT with OR.
Users will interpret the NOT operator with lower precedence than
the other boolean operators.
select the objects that match not triangle or green %

precedence of NOT is higher than OR
interpreted as: (not triangle) or green

9

precedence of NOT is lower than OR
interpreted as: not (triangle or green)

67

p<.001

Hypothesis 7 is confirmed.
Users will misinterpret parenthesized expressions.
select the objects that match (not circle) or blue

%

ignore parenthesis, NOT has low precedence
interpreted as: not (circle or blue)

39

observe parenthesis
interpreted as: (not circle) or blue

12

p<.05

Hypothesis 8 is not confirmed.
Users will interpret queries that use match forms more accurately
than equivalent textual queries. % correct

Match Forms (RF) 71
Text (RT) 74

not significant

Hypothesis 9 is confirmed.
Users will generate more accurate queries using match forms than
they generate using text. % correct

Match Forms (WF) 94
Text (WT) 85

p<.0001

7. Discussion

Although the results help to explain some of the reasons
why boolean queries using AND, OR, and NOT are so diffi-
cult, the textual alternatives that we proposed did not
improve performance. On the other hand, the proposed tab-
ular query forms did improve performance on writing tasks,
while performing about the same on reading tasks.

7.1. Textual query variations

Hypothesis 1 was not confirmed. The participants per-
formed about the same using nested IF statements as they
did using a boolean expression with the AND operator. On
the preferences survey, the majority of the participants pre-
ferred the boolean expression.

Hypothesis 2 was not confirmed. The participants per-
formed about the same using an Unless clause as they did
using a boolean expression with the AND and NOT opera-
tors. On the preferences survey, the majority of the partici-
pants preferred the boolean expression.

Hypothesis 3 was confirmed. The participants performed
significantly better with the Unless clause at the end than
they did with the Unless clause earlier in the statement.
However, given the result of Hypothesis 2, the importance
of this result is questionable. Also, the very simple prob-
lems used in this study did not provide a good way to test
the situation where we speculated that the Unless would
violate the principle of locality. On the preferences survey,
most of the participants preferred the Unless at the end.

Hypothesis 4 was confirmed. Two slightly different que-
ries using AND resulted in significantly different interpreta-
tions. 85% of the participants interpreted the AND in “select
the objects that match blue and circle” as a conjunction
operator. But only 36% of them interpreted it that way in
“select the objects that match blue and the objects that
match circle.” Instead, 55% of them interpreted the AND in
the second statement as a disjunction operator. This result
helps to explain the frequently observed error where users
incorrectly use AND instead of OR.

Hypothesis 5 was disconfirmed. Despite the fact that the
majority of the participants interpreted AND as a disjunc-
tion operator in “select the objects that match blue and cir-
cle,” they are significantly more accurate in interpreting
disjunction if the OR operator is used. On the preferences
survey, the majority of the participants preferred OR over a
verbose AND statement to express disjunction.

In the surprising results of hypothesis 6, we measured
reliable effects in opposite directions depending on context.

The hypothesis was disconfirmed when comparing the pre-
cedence of NOT with AND. 64% of the participants treated
NOT with higher precedence than AND, matching the com-
mon usage in programming languages. However, the
hypothesis was confirmed when comparing the precedence
of NOT with OR. In this case, 67% of the participants
treated NOT with lower precedence than OR. Since consis-
tency is an important human-computer interaction principle
[9], this reversal in the natural interpretation of precedence
suggests that it is unwise to rely on implicit precedence
rules.

Hypothesis 7 was confirmed. Users ignored parenthesis
significantly more often than they observed them. The
query was, “select the objects that match (not circle) or
blue.” The results on hypothesis 6 suggest that without the
parenthesis, most participants would have applied the NOT
operator to the expression “circle or blue.” The parenthesis
were not able to override this tendency.

7.2. Match forms vs. text

Hypothesis 8 was not confirmed. On reading tasks, the
participants performed about as well with match forms as
they did with text. However, hypothesis 9 was confirmed.
On writing tasks, the participants performed significantly
better with the match forms than they did with text. This
disparity, where a positive effect is stronger on generation
tasks than interpretation tasks, has also been observed in
other systems (e.g. [23]). On the preferences survey, which
was a reading task, the participants’ choices were about
equally divided between text and match forms.

Match forms were not superior for code interpretation,
but they did not have a detrimental impact on that task.
Thus the overall effect of using match forms should be pos-
itive due to the strong gains on generation tasks, despite the
lack of an effect on interpretation tasks.

The breakdown of individual questions in the query gen-
eration task shows that the participants performed about the
same in the two conditions when the queries were simpler,
but as the queries became more complex, the differences in
favor of the match forms increased. While the trend in favor
of match forms was present in all cases, only the queries
that involved disjunction revealed significant differences
between match forms and text. As expected, the most com-
mon error on these problems was the substitution of AND
where OR was required.

The three problems that were excluded from the reading
comparison were among the more complex queries. Since
the advantage of query forms is stronger on more complex
queries, excluding this data may have reduced any positive
effect of match forms on the reading task, making it less
likely that our study would be able to confirm hypothesis 8.
Further research into this question is warranted.

The strong effect of match forms came with very little
training. It is unlikely that the participants had used an
equivalent tabular query language before, and they only
viewed a brief instruction page with a few examples before
beginning to solve the problems. While the instructions for

red and
triangle

square
and not
red

(blue and cir-
cle) or (red
and triangle)

circle
or blue

square
and not
reda

a. The word NOT was required in the solution to this problem

Match Forms
(WF)

94 73 91 42 33

Text (WT) 94 64 12 18 21
n.s. n.s. p<.0001 p<.01 n.s.

the textual problems were similarly brief, the participants
brought knowledge from a lifetime using the words AND,
OR, and NOT in English. This may have interfered with the
programming language interpretation, or made them less
careful in reading the instructions.

8. Conclusions

Based on the results of this study, we can make the fol-
lowing recommendations to designers of programming lan-
guages, scripting tools and search engines that incorporate
query mechanisms:
• Do not use the word AND.
• Do not rely on parenthesis for grouping.
• Do not rely on implicit operator precedence rules.
• Consider using tabular query forms instead of pure text.

This study of what is natural for untrained users provides
a scientific basis for choosing among design alternatives in
query tools for beginners. We will use these results in the
design of a new programming system for children, expect-
ing that this strategy will yield a language that is easier to
learn and use than other languages. In addition to these spe-
cific recommendations, the strategy employed here can be
used by developers to assist in the design of other kinds of
tools.

Acknowledgments

We would like to thank Albert Corbett, Bernita Myers,
Barbara Pane, and the anonymous participants. This
research is funded in part by the National Science Founda-
tion under Grant No. IRI-9900452. Any opinions, findings
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect those of the National Science Foundation.

References

[1] J.-M. Hoc, “Do We Really Have Conditional Statements in
Our Brains?,” in Studying the Novice Programmer, E. Solo-
way and J. C. Spohrer, Eds. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1989, pp. 179-90.

[2] C. Hildreth, “Intelligent Interfaces and Retrieval methods for
Subject Search in Bibliographic Retrieval Systems,” in
Research, Education, Analysis & Design. Springfield, IL,
1988.

[3] Prograph CPX User Guide. Halifax, Nova Scotia: Pictorius
Incorporated, 1996.

[4] J. G. Hays and M. M. Burnett, “A Guided Tour of Forms/3,” ,
Oregon State University, Dept. of Computer Science Techni-
cal Report 95-60-6, June 1995.

[5] J. Tanaka, “The Perfect Search,” in Newsweek, vol. 134,
1999, pp. 71.

[6] L. A. Miller, “Natural Language Programming: Styles, Strat-
egies, and Contrasts,” IBM Systems Journal, vol. 20, pp. 184-
215, 1981.

[7] J. F. Pane, C. A. Ratanamahatana, and B. A. Myers, “Study-
ing the Language and Structure in Non-Programmers’ Solu-
tions to Programming Problems,” International Journal on
Human-Computer Studies, to appear, 2000.

[8] D. Young and B. Shneiderman, “A Graphical Filter/Flow
Representation of Boolean Queries: A Prototype Implemen-

tation and Evaluation,” Journal of American Society for
Information Science, vol. 44, pp. 327-339, 1993.

[9] J. Nielsen, “Heuristic Evaluation,” in Usability Inspection
Methods, J. Nielsen and R. L. Mack, Eds. New York: John
Wiley & Sons, 1994, pp. 25-62.

[10] J. F. Pane and B. A. Myers, “Usability Issues in the Design of
Novice Programming Systems,” Carnegie Mellon University,
Pittsburgh, PA, School of Computer Science Technical
Report CMU-CS-96-132, August 1996.

[11] S. L. Greene, S. J. Devlin, P. E. Cannata, and L. M. Gomez,
“No IFs, ANDs, or ORs: A Study of Database Querying,”
International Journal of Man-Machine Studies, vol. 32, pp.
303-326, 1990.

[12] A. Michard, “Graphical Presentation of Boolean Expressions
in a Database Query Language: Design Notes and an Ergo-
nomic Evaluation,” Behaviour and Information Technology,
vol. 1, pp. 279-288, 1982.

[13] A. McQuire and C. M. Eastman, “Ambiguity of Negation in
Natural Language Queries,” in Proceedings of the Eighteenth
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Posters:
Abstracts, 1995, pp. 373.

[14] P. J. M. D. Essens, C. A. McCann, and M. A. Hartevelt, “An
Experimental Study of the Interpretation of Logical Opera-
tors in Database Querying,” in Cognitive Ergonomics: Con-
tributions from Experimental Psychology, Database
Interrogation, G. C. v. d. Veer, S. Bagnara, and G. A. M.
Kempen, Eds. Amsterdam: North-Holland, Elsevier Science
Publishers, 1992, pp. 201-225.

[15] A. Kohl and W. Rupietta, “The Natural Language Metaphor:
An Approach to Avoid Misleading Expectations,” in Pro-
ceedings of IFIP INTERACT'87: Human-Computer Interac-
tion, 1987, pp. 555-560.

[16] H. Turtle, “Natural Language vs. Boolean Query Evaluation:
A Comparison of Retrieval Performance,” in Proceedings of
the Seventeenth Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval,
Performance Evaluation, 1994, pp. 212-220.

[17] A. W. Biermann, B. W. Ballard, and A. H. Sigmon, “An
Experimental Study of Natural Language Programming,”
International Journal of Man-Machine Studies, vol. 18, pp.
71-87, 1983.

[18] A. Bruckman and E. Edwards, “Should We Leverage Natu-
ral-Language Knowledge? An Analysis of User Errors in a
Natural-Language-Style Programming Language,” in Pro-
ceedings of the 1999 Conference on Human Factors in Com-
puting Systems. Pittsburgh, PA: ACM Press, 1999, pp. 207-
214.

[19] J. Thomas and J. Gould, “A Psychological Study of Query by
Example,” in National Computer Conference, vol. 44. Ana-
heim, CA: AFIPS, 1975.

[20] S. Jones, “Graphical Query Specification and Dynamic
Result Previews for a Digital Library,” in Proceedings of the
ACM Symposium on User Interface Software and Technol-
ogy, Enabling Architectures, 1998, pp. 143-151.

[21] P. G. Anick, J. D. Brennan, R. A. Flynn, D. R. Hanssen, B.
Alvey, and J. M. Robbins, “A Direct Manipulation Interface
for Boolean Information Retrieval via Natural Language
Query,” in Proceedings of the Thirteenth Annual Interna-
tional ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, User Interfaces. Brussels,
Belgium, 1990, pp. 135-150.

[22] J. R. Cordy, “Hints on the Design of User Interface Language
Features – Lessons from the Design of Turing,” in Languages
for Developing User Interfaces, B. A. Myers, Ed. Boston:
Jones and Bartlett, 1992, pp. 329-340.

[23] F. Modugno, A. T. Corbett, and B. A. Myers, “Evaluating
Program Representation in a Visual Shell,” in Empirical
Studies of Programmers: Sixth Workshop, W. D. Gray and D.
A. Boehm-Davis, Eds. Norwood, NJ: Ablex Publishing Cor-
poration, 1996, pp. 131-146.

