
 

Abstract

 

A programming system is the user interface between the
programmer and the computer. Programming is a notori-
ously difficult activity, and some of this difficulty can be
attributed to the user interface as opposed to other factors.
Historically, the designs of programming languages and
tools have not emphasized usability. This paper describes
the process we used to design HANDS, a new programming
system for children that focuses on usability, where HCI
knowledge, principles, and methods guided all design deci-
sions. The features of HANDS are presented along with
their motivations from prior empirical research on pro-
grammers and new studies conducted by the authors.
HANDS is an event-based language that features a concrete
model for computation, provides operators that match the
way non-programmers express problem solutions, and
includes domain-specific features for the creation of inter-
active animations and simulations. In user tests, children
using HANDS performed significantly better than children
using a reduced-feature version of the system where more
traditional methods were required to solve tasks. 

 

1. Introduction

 

Only a very small fraction of users can program their
computers. Yet most could benefit in some way from having
this capability, whether to customize and interconnect their
existing applications or to create new ones. The creators of
Boxer [1] said that, similar to writing, “the significance of
programming derives not only from the carefully crafted
works of a few professionals, but also from the casual jot-
tings of ordinary people.” For these ordinary people, under-
standability, familiarity, ease of performing small tasks, and
a usable interface are more important features than techni-
cal objectives like formal simplicity, efficiency, verifiability,
and uniformity.
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Many people who try to learn programming are quickly
discouraged because it is a very difficult skill to acquire.
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Even people who have been trained to program find it to be
a challenging task. Why is programming so difficult? Part
of the problem is that it requires problem solving skills and
great precision. But even people who can envision a viable
solution to a programming problem often find it very diffi-
cult to express the solution correctly in the form required by
the computer. This user-interface problem has long been
recognized [2]. 

The field of HCI has general principles and heuristics
that can be applied to help overcome these problems: be
consistent, keep it simple, speak the user’s language, pre-
vent errors, help the user get started, etc. [3]. The 

 

cognitive
dimensions

 

 framework lists additional criteria that can be
used to evaluate design alternatives in programming sys-
tems, such as closeness of mapping, viscosity, hidden
dependencies, imposed guess-ahead and visibility, etc. [4]. 

Much progress had been made to understand the cogni-
tive demands of programming and the sources of difficulty
in existing programming languages and tools. However,
this work is generally diagnostic rather than prescriptive,
and it has had little influence on the designs of new sys-
tems. When language designers face design decisions that
are not determined by their technical objectives, they usu-
ally choose solutions that are similar to existing languages
or that appeal to their intuition. Usability is rarely adopted
as a formal objective.

The focus of our work has been to elevate usability to be
a first-class objective in programming system design [5].
We have organized the research from Psychology of Pro-
gramming (PoP), Empirical Studies of Programmers (ESP),
and related fields so that it can be readily included among
the guidelines and strategies that are used by all language
designers [6]. Where we have identified questions that were
not yet answered, we have conducted user studies to
address them. While our attention has been on beginner
programmers, the approach applies equally well to experts,
where training and productivity can be impacted. 

We propose that all programming language designers
should formally include usability principles among the var-
ious design guidelines that they use in creating new lan-
guages. Depending on the constraints of the project and the
target audience, usability may be given more or less weight,
but it is always worth considering for those decisions that
are not already determined by the other design criteria. For
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our new programming language for children, we adopted
the extreme position of placing usability above all other
objectives, while still aiming for a general purpose lan-
guage. We have explicitly given lower priority to issues
such as efficiency, being able to prove correctness, similar-
ity to existing languages, etc. Throughout the creation of
this language, our primary guidance for making design
decisions came from the HCI, ESP and PoP literature, and
new studies of children who do not know how to program.

The target audience for our system is children in fifth
grade or older. We selected children because they often
have an interest in learning how to program but can be
quickly discouraged when they try. Their goals are ambi-
tious – they would like to create programs that are similar
to the games and simulations they use every day. These pro-
grams are graphically rich and highly interactive, unlike the
first programs they are likely to make in many systems,
such as to display “hello world” on the screen. Our goal is
to provide an easy entry into creating these interactive
graphical programs, and to scale well so that it is possible
to create more elaborate programs.

Our new programming system for children is called
HANDS (Human-centered Advances for the Novice Devel-
opment of Software). This paper summarizes the HANDS
system and describes how its unique set of features were
motivated by usability issues [7]. HANDS is a successful
case study on how this new design method can yield lan-
guages with usability advantages over existing program-
ming systems.

 

2. Related work

 

Logo [8] is a successful and popular language for chil-
dren. Its textual language is based on Lisp, with a syntax
that was redesigned to be easier to learn and read, yet it
uses unusual punctuation and cryptic names for commands.
Logo uses a turtle metaphor for a drawing pen. StarLogo
extends the metaphor to parallel processing [9].

Boxer [1] uses a two-dimensional, visible, concrete met-
aphor where boxes and their spatial relations represent the
computation. Variables can be modified by direct manipula-
tion, and the state and code for graphical objects is pack-
aged with their graphical representation. Boxer’s textual
language is very similar to Logo, with extensions to
broaden its range of capabilities. 

ToonTalk is a children’s programming language based
on a video game metaphor [10]. Its cartoon world provides
concrete realizations of all of the concepts required in con-
current constraint programming. Programs are constructed
by using video-game controls to train robots. However, the
low-level primitives of this system present a challenge for
beginners, who may have great difficulty in figuring out
how to compose the primitives to accomplish their higher-
level goals.

AgentSheets [11] is the first of a family of rule-based
graphical programming environments that use a spread-
sheet metaphor. In these systems, program objects occupy
cells in a grid, and interact with the objects in neighboring

cells. These interactions are specified by graphical rewrite
rules, which are before-and-after pictures. Stagecast (for-
merly KidSim and Cocoa) extended this metaphor with the
capability to use programming by demonstration to create
the graphical rewrite rules [12]. While beginners can
quickly create some interesting programs, some kinds of
games and simulations are difficult to implement. For
example, the grid makes it difficult to implement smooth
motions in arbitrary directions. Also, graphical rewrite rules
can suffer from combinatorial explosion in the number of
situations that must be considered; and these rules by their
nature are not suited to interactions at a distance.

SmallTalk is an exploratory object-oriented language
that was designed to be accessible to non-technical people
[13]. A recent portable implementation named Squeak
includes a learning environment interface for children, with
support for them to add behaviors to objects [14]. This
interface features a subset of the SmallTalk language in a
more verbose style, with a tile-based structure editor to
assist in constructing correct programs.

Numerous “mini-languages” have been created over the
years for teaching programming in an environment that is
intentionally limited for simplicity [15]. These languages
are used for a short time to allow beginners to learn some
programming, before they move to more complete pro-
gramming languages. Usually these languages are very
similar to existing languages, so they generally do not break
substantial new ground in language design. However,
GRAIL stands out among mini-languages because its cre-
ators relaxed this constraint, and adopted usability princi-
ples and a pedagogical theory to guide its design [16]. User
studies showed that students made significantly fewer
errors when using GRAIL.

Visual Basic is a popular end-user programming system
for non-programmers. It is a textual event-based language
with domain-specific support for forms, dialog boxes and
tables, which are common in business tasks. The program-
ming language itself is based on the original Basic lan-
guage, which has many well-known usability problems [6].

Java and Microsoft’s C# contain many usability refine-
ments over C and C++. These changes were based on com-
mon problems experienced by programmers using the
earlier languages. However the designers were constrained
in how far they could deviate from the predecessors, so pro-
grammers could more easily switch to the new languages. 

 

3. User studies of non-programmers

 

One goal of the new system is to provide a 

 

close map-
ping

 

 between the way the programmer envisions a problem
solution and the expression of that solution in program code
[4]. We conducted a pair of studies to examine the language
and structure that children and adults use before they have
been exposed to programming [17]. In these studies, we
presented programming tasks to non-programmers and they
solved them on paper. The tasks covered a broad set of
essential programming techniques and concepts, such as
control structures, storage and manipulation of data, arith-
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metic, Boolean logic, searching and sorting, animation,
interactions among objects, etc. In posing the problems, we
used pictures and very terse captions, to minimize the
chance that our materials would influence the answers.

Some of the features observed in these studies were: an
event-based or rule-based structure was used, where actions
were taken in response to events; aggregate operators (act-
ing on a set of objects all at once) were used much more
often than iteration through a set and acting on the objects
individually; data structures were avoided by using content-
based queries; a natural language style was used for arith-
metic; objects automatically remembered their state (such
as motion), and the participants only mentioned changes in
this state; operations were more consistent with list data
structures than arrays; and participants rarely used Boolean
expressions, but when they did their expressions were often
incorrect if interpreted according to the rules of most pro-
gramming languages. All of these observations have influ-
enced the design of our new programming system.

 

4. The HANDS system

 

This section describes the various usability issues we
considered, and how the HANDS system was designed to
address them.

 

4.1. The role of the programming environment

 

The programming environment comprises the tools for
viewing, editing, debugging and running the program.
Many programming languages are designed independently
from the environment, but the HANDS language was not.
We designed the environment to work in tandem with the
language to address some important usability issues. For
example, editing support can relieve many of the problems
that people have with writing programs in a textual lan-
guage. The environment’s components play critical roles in
the overall usability of the HANDS system. 

 

4.2. Textual vs. visual 

 

One of the first decisions we faced was whether the lan-
guage should be textual or visual. In visual languages,
graphics replace some or all of the text in specifying pro-
grams. Proponents of visual programming languages often
argue that reducing or eliminating the text in programming
will improve usability [12]. However, much of the underly-
ing rationale for this expectation is suspect [18]. User stud-
ies have shown mixed results on the superiority of visual
languages over text (e.g. [19]), and the advantage of visual
languages tends to diminish on larger tasks. 

The participants in our user studies usually drew pictures
describing the layout of the program, and then used text to
describe the behaviors and actions. HANDS supports this
hybrid approach, and relies on the programming environ-
ment to alleviate some of the difficulties of textual lan-
guages. During program entry, context-sensitive menus
make it easier to know what choices are available and to

enter the program correctly. This support could be aug-
mented with a tile-based editor, as seen in Squeak [14] and
other systems. Also, the system could provide visual repre-
sentations for textual elements that are difficult. One exam-
ple is Boolean expressions, as discussed below. 

 

4.3. Language syntax 

 

The programming language should observe the HCI
principle to speak the user’s language. This means it should
avoid using words and symbols that are unfamiliar or that
have different meanings in other domains (e.g. void, static,
dim, etc.). If users are not sure what to do they often use
their knowledge of other areas including natural language
and mathematics [20]. If the syntax or semantics of the pro-
gramming language are incompatible with this existing
knowledge, errors and confusion result. For example, 

 

x = x
+ 10

 

 does not make sense in mathematics.
The syntax of HANDS was designed to match the com-

mon ways that participants expressed operations in our
studies. For example, the system accepts a natural-language
style for arithmetic: (e.g. 

 

add 100 to score

 

). Overall, the
language has a verbose conversational style, similar to
HyperTalk. To improve readability, the system allows the
word 

 

the

 

 to be placed anywhere in the code – it is ignored.
Many languages use a common symbol (such as end) to

terminate many different kinds of control structures. When
several structures are nested, it can be difficult to figure out
which terminator belongs to which structure. If the termina-
tor is optional, additional ambiguities can result. For exam-
ple, Pascal and HyperTalk have the dangling-else problem,
where the system may attach an else clause to a different if
statement than the user intended. For these reasons, all
structures in HANDS that allow statements to be nested
require a matching terminator that incorporates the name of
the structure. For example, the 

 

if

 

 statement is terminated
with 

 

end if

 

. To reduce the amount of typing required, the
system automatically inserts these terminators.

Where possible, we avoided requiring punctuation or
other symbols if their only purpose was to make it easier to
parse. These syntactic elements are a distraction from the
semantically-important parts of the program, and are a
common source of errors. For example, no semicolon is
required to terminate or separate statements, and parenthe-
sis are only required when expressions are being nested and
interpretation would otherwise be ambiguous. 

 

4.4. Representation of the program

 

The von Neumann computational model is an obstacle
for beginners because it is unfamiliar and has no real-world
counterpart [21]. Beginners must learn, for example, that
the program follows special rules of control flow for proce-
dure calls and returns. Usability could be improved by pro-
viding a different model for the computation that is
concrete and familiar [12]. 

Most languages also have complex rules that govern the
lifetimes of variables and their scopes. Variables may not
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exist at all when the program is not running, and during
execution they are usually invisible, forcing the program-
mer to use print statements or debuggers to inspect them.
This violates the principle of visibility, and contributes to a
general problem of memory overload [22]. The program-
ming system should make information visible or readily
accessible any time it is relevant.

The HANDS system addresses these problems with a
new model of computation that is concrete, uses familiar
concepts, and has high visibility. In HANDS, an agent
named Handy sits at a table, manipulating information on
cards (see Figure 1). All of the data in the system is stored
on these cards, which are global, persistent and visible on

the table. Each card must have a unique name, which is not
case sensitive. There are no local variables, although a tem-
porary naming mechanism is available (see Section 4.12).

The front of each card contains a list of name-value pairs
called properties. Several properties are always present: the

 

cardname

 

 property holds the card’s name, and the 

 

x

 

 and 

 

y

 

properties contain the card’s position coordinates. The pro-
grammer can add more properties as needed, so cards are
similar to records (or structs) in other languages. Each
property on a card has a unique name, which is not case-
sensitive. The programmer refers to the nectar property of a
card named flower with one of these syntaxes: 

 

nectar of
flower

 

 or 

 

flower’s nectar

 

. In addition to the usual ways that

Figure 1. The HANDS system portrays the components of a program on a round table. All data is stored
on cards, which can be drawn from the pile at the top right and dragged into position. At the lower left,
two cards are shown face-down on the table. One has a generic card back and the other has been given
a picture by the programmer. In the center of the table is a board, where the cards are displayed in a
special way where only the contents of the back are displayed. Each picture, string, and number on the
board is a card. At the right, one of the cards has been flipped face-up, where its properties can be
viewed and edited. The programmer inserts code into Handy’s thought bubble, by clicking on Handy’s
picture in the upper left corner. When the play button is pressed, Handy begins responding to events by
manipulating cards according to the instructions in the thought bubble. The stop button halts the pro-
gram, and the reset button will restore all cards to their state at the time the play button was last
pressed. For reference, a compass is embossed on the table at the lower right.
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data can be manipulated by the code of a running program,
cards and their properties can be managed by direct manip-
ulation, even before or after the program has run. 

Some properties are treated specially by the system. For
example, the 

 

back

 

 property, if present, controls what is dis-
played on the back of the card when the card is face-down.
If the value of the 

 

back

 

 property is the name of a file con-
taining an image, the image is displayed on the back of the
card. Otherwise, the value in the property is displayed liter-
ally on the back of the card. If there is no 

 

back

 

 property on
a card, a generic card back is displayed when it is face-
down. All cards are flipped face-down when the program
starts running. These features make it very easy for the pro-
grammer to display graphics and text on the screen. Figure
1 shows examples of cards with pictures, strings and num-
bers on their backs, as well as one card with the generic pic-
ture on its back. 

The program itself is stored in Handy’s thought bubble.
To emphasize the limited intelligence of the system, Handy
is portrayed as an animal– like a dog that knows a few com-
mands – instead of a person or a robot that could be inter-
preted as being very intelligent.

A future version of the HANDS system will permit the
programmer to generate an end-user version of any pro-
gram, giving it a more completed look. In this version, most
of the HANDS environment will be invisible, and the com-
puter will only show the board, the large white region at the
center of Figure 1. Cards that are on the board are therefore
the only ones that are visible in the end-user version. Other
cards used in the computation can be placed elsewhere on
the table. 

 

4.5. Programming style and model of execution

 

HANDS is event-based, to match the style of program-
ming that we observed in our studies. A program is a col-
lection of event handlers that are automatically called by
the system when a matching event occurs. Inside an event
handler, the programmer inserts one or more imperative
statements to execute in response to the event. After these
statements have executed, control returns to the system,
where the next event is dispatched. Event handlers can be
triggered by the following kinds of events: the program
starting to run or stopping; an object appearing, disappear-
ing, or changing; objects colliding; objects being clicked by
the user; keystrokes; nothing happening (the idle loop); or
something happening (any event). If an event is generated
and there is no handler for it, the system continues on to the
next event in the queue. Figure 2 shows the browser for
event handlers.

 

4.6. Data types

 

The value of a property can hold any of the following
types of data: an identifier, representing the name of a card;
a string literal, delimited by quotes; a numeric literal, either
integer or floating point; a Boolean literal, either yes or no;
a list of zero or more data elements, not necessarily of

homogeneous type.
The system does not enforce types until necessary. An

error will be reported only if the system cannot interpret a
data value as the expected type, such as if a math operation
is performed on a non-numeric value. All data types can
successfully be interpreted as strings. Lists have properties
like traditional lists, such as being unbounded and permit-
ting insertion without making space, and properties like
arrays, such as index-based access.

 

4.7. Operations on Cards

 

The programmer can instruct Handy to create and delete
cards, and to modify the properties of cards. If the property
does not exist, it is created.

 

• set nectar of flower to 100
• set flower’s nectar to flower’s nectar + 25
• add 25 to flower’s nectar

 

The last two examples accomplish the same effect; the lat-
ter uses the more natural syntax observed in our studies

 

4.8. Aggregate operations

 

Several language constructs or features have been
repeatedly identified as troublesome in the literature. For
example, researchers have identified ways to improve per-
formance by redesigning loops [23], yet these solutions
have not been adopted by most languages. More impor-
tantly, many languages force users to perform iteration in
situations where aggregate operations could accomplish the
task more easily [24]. 

In our studies, we observed that the participants used
aggregate operators, manipulating whole sets of objects in
one statement rather than iterating and acting on them indi-
vidually. Most languages force the programmer to use itera-
tion, violating the principle of closeness of mapping. 

HANDS has full support for aggregate operations. All

Figure 2. HANDS is an event-based system. The
left pane lists seven complete (syntactically cor-
rect) event handlers, and one that is marked in red
because it is not finished (unfinished-2). The
upper right pane shows the code for when any bee
collides into any flower. The lower right pane displays
any error messages for the selected event han-
dler.
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operators can accept lists as well as singletons as operands,
or even one of each. For example,
• 

 

1 + 1 

 

evaluates to

 

 2

 

• 

 

1 + (1,2,3) 

 

evaluates to

 

 2,3,4

 

• 

 

(1,2,3) + (2,3,4) 

 

evaluates to

 

 3,5,7

 

4.9. Queries

 

In our studies, we observed that users do not maintain
and traverse data structures. Instead they perform queries to
assemble lists of objects on demand. For example, they say
“all of the blue monsters.” HANDS provides a query mech-
anism to support this. The query mechanism searches all of
the cards for the ones matching the programmer’s criteria.

Queries begin with the word 

 

all

 

. If a query contains a
single value, it returns all of the cards that have that value in
any property. If the value is a word ending in “s”, it will
also match cards that have the value without the trailing s.
Figure 3 contains cards representing three flowers and a bee
to help illustrate the following queries:
• 

 

all flowers 

 

evaluates to

 

 orchid, rose, tulip

 

• 

 

all bees 

 

evaluates to

 

 bumble

 

• 

 

all snakes 

 

evaluates to

 

 the empty list

 

• 

 

all (flower and (nectar < 100)) 

 

evaluates to

 

 orchid

 

Section 4.10 describes a more effective method for specify-
ing more complex queries like the last example. 

Queries and aggregate operations work in tandem to
enable the programmer to concisely express actions that
would require iteration in most languages. For example:

 

• set the nectar of all flowers to 0

 

4.10. Boolean expressions

 

The accurate specification of Boolean expressions is an
area that is very difficult and has been studied extensively.
The common uses of the words AND and OR in natural lan-
guage lead to errors when these words are used to name the
Boolean operators in queries; and the intended scope of the
NOT operator is ambiguous. 

To address this problem, we examined using different
keywords and structures to specify Boolean expressions, as

well as a tabular alternative called match forms that we
designed to be similar to cards (Figure 4). On a match form,
all of the listed values implicitly form a conjunction. Nega-
tion is specified by prefacing a value with the NOT opera-
tor. Disjunction is specified by including an additional
match form adjacent to the first one. The match forms in
Figure 4 represent the query 

 

(blue and not square) or (cir-
cle and not green)

 

.
In our user study, match forms performed better than any

of the purely textual representations we tested, including
Boolean expressions [25]. Match forms helped the partici-
pants avoid some of the common problems they had with
using the Boolean operators to construct textual expres-
sions. These errors included inconsistently using AND for
both conjunction and disjunction, and inconsistently apply-
ing precedence to operators, especially when the NOT
operator was present. 

Match forms will be incorporated into the HANDS sys-
tem at a future date, with some extensions. Although match
forms can express arbitrarily complex queries in disjunctive
normal form, this is sometimes less concise than unre-
stricted Boolean expressions would allow. This will be
relieved somewhat by allowing an entire form to be negated
(“objects that do not match ...”). The match forms in
HANDS will also have property names alongside the val-
ues, like cards do, so the programmer can easily restrict the
match of a value to a specific property.

 

4.11. List operators

 

The system provides a basic set of list operators, as seen
in Lisp and other languages. Like all operators in HANDS,
these operators also accept empty lists and singletons. Here

Figure 3. When the system evaluates the query all flowers it returns orchid, rose, tulip.

Figure 4. Match forms expressing the query
(blue and not square) or (circle and not green).
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are some examples, referring again to Figure 3:
• 

 

FirstItem of all flowers 

 

evaluates to

 

 orchid

 

• 

 

GreatestItem in nectar of all flowers 

 

evaluates to

 

 150

 

• 

 

Sorted nectar of all flowers 

 

evaluates to

 

 75,100,150

 

• 

 

CardWithLeast nectar of all flowers 

 

evaluates to

 

 orchid

 

• 

 

Sum nectar of all flowers 

 

evaluates to

 

 325

 

It is interesting to compare the last example (Sum) with
how it might look in a typical programming language:

 

int sum = 0;
for (i=0; i<cards.length(); i++) {

if (cards[i].containsValue("flower")) {
    sum += cards[i].nectar;

}
}
return sum;

 

This solution requires temporary variables, three kinds of
parenthesis or brackets, three other kinds of punctuation,
and the complexities of iteration and array indexing.

 

4.12. Loop and conditional control structures

 

The aggregate and list operators greatly reduce the need
for iteration in HANDS. However, one high-level loop con-
trol structure is available, if needed. This example sets the
nectar properties of the rose, tulip and orchid cards to a dif-
ferent random value between 50 and 100:

 

with all flowers calling each the flower
     set the flower’s nectar to random from 50 to 100
 end with

 

The clause 

 

calling each the flower

 

 is a temporary naming
mechanism that causes the identifier flower to be bound to
one of flower during each iteration of the loop. If the user
does not explicitly set this name, the system uses the identi-
fier 

 

item

 

.

 

with all flowers
     set the item’s nectar to random from 50 to 100

end with

 

A general if statement incorporates the functionality of case
and cond statements in other languages:

 

• if f=tulip then                             // 

 

if-then-else style

 

set f’s nectar to 0
otherwise set f’s nectar to 100

end if
• if f=… // 

 

case statement style

 

tulip then set f’s nectar to 0
orchid then set f’s nectar to 10
otherwise set f’s nectar to 20

end if
• if // 

 

cond style

 

f’s nectar > 30 then set f’s nectar to 0
f’s nectar < 30 then set f’s nectar to 10
otherwise set f’s nectar to 20

end if

 

We observed each of these notations in our studies, and
there is no good reason that to distinguish them as three dif-
ferent control structures with inconsistent names and syn-
taxes. When there are multiple conditions, only the first one
to match is executed. The otherwise clause is optional.

 

4.13. Domain-specific support

 

HANDS has domain-specific features that enable pro-
grammers to easily create highly-interactive graphical pro-
grams. For example, the system’s suite of events directly
supports this class of programs. The system automatically
generates events for collisions among objects and for key-
board and mouse input from the user. 

It is easy to create graphical objects and text on the
screen, as described above in Section 4.4. Any card that
contains properties named speed and direction is automati-
cally animated by the system without any programming.
Speed is a relative value, and can be positive or negative.
Direction is an angle specified in degrees, adopting the con-
vention from math that zero points to the right and the angle
increases in a counter-clockwise direction. Since some
users may not be familiar with this convention, an image of
a compass is available in HANDS for the user to refer to
when working with directions (see Figure 1). 

This combination of features permits the programmer to
implement sophisticated behaviors with only a few lines of
code. For example, after giving the bees in Figure 1 initial
speeds and directions, the programmer can use this event
handler to make them fly around like bees:

 

when any bee changes
     add random from -5 to 5 to the bee’s direction

end when

 

Each time the system moves one of the bees, an event is
generated indicating that the card has changed. This event
handler responds to that change by making a small random
change to the bee’s direction. A future version of HANDS
will also provide timers that generate events at specific
times or intervals. 

 

4.14. Modularity and encapsulation

 

HANDS programs can be extended by importing one or
more existing programs. The system integrates the new pro-
gram by adding the cards to the table and adding the event
handlers to the thought bubble. If a handler exists for a par-
ticular event in both programs, the system offers to merge
the code automatically. This makes it very convenient to
build and use a library of small autonomous objects, each as
a small program with one card and the code to control its
behavior. For example, the bees from the program shown in
Figure 1 could be imported into another program. The bees
would fly around in the new program, and if there are flow-
ers present the bees would try to collect nectar from them.
But if there were no flowers, the bees’ nectar-collecting
code would not interfere with the operation of the program.

The HANDS design can support additional agents
besides Handy, working together or in competition to
accomplish tasks. This extension includes privacy of data
because cards can be held in one agent’s hand making them
invisible to other agents. This capability is not visible in the
current user interface because we determined it is too con-
fusing for beginners. However, as the program grows larger
and the programmer becomes more experienced, this
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encapsulation feature becomes quite useful. For example, it
would permit imported programs to be kept separate from
the existing code.

We have a design for extending the card metaphor to
represent procedural abstraction. Parameters will be passed
by setting the properties of one of these cards. Then, when
the result property is read, the procedure would be called to
compute the value of the property. In addition, we would
like to investigate how the system scales to larger programs.
For example, we will look at ways to help the programmer
manage large quantities of cards and event handlers.

 

5. User study

 

Our user-centered design process resulted in program-
ming system that has a unique combination of features.
Many of these features are not present in currently-popular
programming systems even though they are not new ideas.
We selected three such features for evaluation, to investi-
gate whether their inclusion has an impact on usability [26]. 

The three features examined in the study are: 

 

queries

 

,

 

aggregate operations

 

, and the 

 

high visibility of data

 

. In
other popular programming systems such as Logo or Java,
programmers use data structures, iteration, and debuggers
to accomplish the tasks that might otherwise be accom-
plished with these three HANDS features. It happens that
HANDS also supports these alternative methods. 

A version of HANDS was constructed where the three
studied features were turned off. With this limited version,
programmers could achieve all of the tasks we gave them,
but had to use the authentic alternative methods that are
used in other programming systems. The study compared
the HANDS system with this limited version. 

Twenty three fifth-grade children from a public school in
Pittsburgh, PA, USA volunteered to participate in this
study. None of them had any programming experience. Half
of them used the HANDS system and the other half used
the limited version. In either case, the participants spent
three hours in the study, first learning the basics of the sys-
tem from a tutorial and then trying to accomplish a series of
tasks. In working through the tutorial, the participants
began with an empty program and created several flowers
and a bee that flies around collecting nectar from the flow-
ers. The bee was controlled by keyboard commands, and
the program displayed some basic statistics about the
amount of nectar the flowers had and which flower had the
least nectar. After completing the tutorial, the participants
loaded a program similar to the one shown in Figure 1,
which had more bees and some pre-defined cards to help
solve the tasks. They used the remaining time in the session
to work on six tasks that required them to add code to this
program. 

All of these materials were constructed to be as similar
as possible in the two versions, differing only where neces-
sary due to the limitations of the reduced-feature version of
HANDS. The tutorial for the limited system was derived
from the full-featured tutorial. Those portions utilizing a
feature that was missing in the limited system were

replaced with material teaching the easiest way to use the
system’s remaining features to achieve the same result. This
modification resulted in a minor increase in the size of the
tutorial.

The study measured performance on the six tasks. Of the
children who finished the tutorial and began working on the
tasks (9 in each group), participants using HANDS per-
formed significantly better than their peers using the limited
system (p<.05). Overall, the children using HANDS cor-
rectly solved 19 tasks, and seven of them solved at least one
task. Only one of the participants using the limited system
was able to solve any tasks, and this child only solved one.
These differences cannot be attributed to extra time spent
on the slightly longer tutorial in the limited condition.

The study demonstrates the combined impact of the
three features – queries, aggregate operations, and data vis-
ibility – but of course does not tease apart their individual
contributions. Nonetheless, it validates the design process
that led to the features’ inclusion in HANDS, and suggests
that these features could improve the usability of program-
ming systems in general. More work is planned to assess
the overall effectiveness of HANDS and compare it with
other programming systems for children such as Logo,
Boxer or Stagecast.

 

6. Range and Scalability

 

HANDS was designed to be easy to learn, but an addi-
tional goal was for HANDS to be powerful and general, so
that more experienced programmers will not quickly out-
grow the system. To explore the range and scalability of
HANDS, several more experienced programmers have
implemented a broad set of programs. One of the authors
created a program to compute prime numbers with a single
8-line event handler and six cards. His solution to the 

 

Tow-
ers of Hanoi

 

 problem required six event handlers (53 lines
of code) and ten cards. 

An undergraduate computer science student used the
system to build a version of the game 

 

Breakout

 

. A two-level
version of this game required 12 event handlers (178 lines
of code), and 62 cards. 53 of the cards represent bricks.
Each additional level added to the game would require
about 25 more cards and 15 more lines of code. 

This student also implemented a simulation of the ideal
gas law, where the relationships among pressure, volume,
and temperature obey the formula: PV=nRT. This program
displays a chamber with small molecules bouncing around
inside. The user can manipulate the variables, and observe
the effect on the other variables and see changes in the
speeds of the molecules. This simulation required 18 rules
(180 lines of code), and 36 cards. 12 rules and 12 cards
implemented checkboxes and scrollbars. A future version
of HANDS may provide a library of widgets, reducing the
size of this simulation accordingly.

A high school student compared HANDS with Stagecast
[12] for a science project. He implemented Pacman in both
systems, and concluded that HANDS was easier to use,
required fewer lines of code, and enabled him to implement
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more features.

 

7. Conclusions

 

This paper is a case study of a new, human-centered
approach to the design of programming languages. It tracks
the design of a new programming system for children,
describing how HCI techniques and evidence from the liter-
ature, as well as new studies by the authors investigating
unaddressed questions, impacted the design and selection
of features for the language. 

This human-centered design approach has led to a new
programming system with a set of features that differs sub-
stantially from the currently-popular programming lan-
guages. Several of these features have already been shown
to have a significant positive effect on usability. It is a
promising validation of the design methodology described
here, and suggests that this method would be generally use-
ful for all programming language designers. 

 

This research was funded in part by National Science Founda-
tion Grant No. IRI-9900452. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of
the authors and do not necessarily reflect those of the NSF.
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