

ABSTRACT

HANDS is a new programming system for children that
was designed for usability. This paper examines the effec-
tiveness of three features of HANDS:

queries, aggregate
operations, and data visibility.

 The system is compared
with a limited version that lacks these features. In the lim-
ited version, programmers can achieve the same results but
must use more traditional programming techniques. Chil-
dren using the full-featured HANDS system performed sig-
nificantly better than their peers who used the limited
version. This provides evidence that usability of program-
ming systems can be improved by including these features.

Keywords

End-user programming, psychology of programming, user
studies, programming languages.

INTRODUCTION

The basis for generation and selection of the features of
HANDS came from prior empirical research on program-
mers [1] and new studies conducted by the authors [2, 4].

Overview of the HANDS System

In contrast to the

von Neumann machine

, HANDS uses a
familiar model to represent the computation: a

character

sitting at a

table

, manipulating

cards

 that contain all of the
program’s data. The HANDS language provides operators
that closely match the problem-solving methods observed
in non-programmers. It uses an

event-based

 style of pro-
gramming, and provides

queries

 and

aggregate operators

 to
allow more concise high-level expressions for tasks that
require synthesis of many primitives in other languages [3].

The following sections describe the three features examined
in this paper. The HANDS system was compared with a
limited version of the system that lacks the features. In the
limited version, the programmer must use the more tradi-
tional methods that are typically seen in popular program-
ming systems.

Queries

HANDS provides a query mechanism that allows the pro-
grammer to assemble a list of objects on demand. For

example, the query

all flowers

 searches for all of the
cards that contain the string “flower” and returns a list of
their names (e.g.,

rose, tulip, orchid

). HANDS supports
more complex queries, but only this simple form was used
in this study.

Most programming systems do not have a query feature. In
those systems, the programmer must create and maintain
data structures that provide access to the desired informa-
tion. This is also necessary in the limited version of
HANDS. For example, the programmer could create a card
that holds a list of all of the flowers. This list would have to
be updated each time a flower is added or removed from the
program.

Aggregate Operators

In HANDS, all operations can be performed on a whole list
of objects, including query results, with a single command.
For example,

set nectar of all flowers to 0

 will
achieve the desired effect no matter how many flowers there
are. Using the above example, the rose, tulip, and orchid
cards would all have their nectar properties set to 0.

Most traditional programming systems do not support
aggregate operations. In those systems, the programmer
must iterate over the list of objects, operating on them one
at a time. This is also the case in the limited version of
HANDS, where the example shown above can be accom-
plished as follows:

with garden’s flowerList calling each the flower
set nectar of the flower to 0

end with

Visibility of Data

All data in HANDS is stored on cards, in name-value pairs
called properties. Cards are always visible, even when the
program is not running. They can be created and edited by
direct manipulation as well as by actions taken by the pro-
gram itself. The properties of multiple cards can be viewed
simultaneously.

Traditional programming systems often do not provide
these features for data. Variables might exist only tempo-
rarily while certain parts of the program are running. Data
may not be visible to the programmer unless a debugging
tool is used. In some systems, objects can only be created
by executing code, and they do not exist when the program
is not running. Systems that display the properties of
objects may be limited to showing only one object at a time.
The limited version of HANDS shows the properties of

The Impact of Human-Centered Features on the
Usability of a Programming System for Children

John F. Pane

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268 8078
pane+@cs.cmu.edu

Brad A. Myers

Human Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268 5150
bam+@cs.cmu.edu

Appeared in

CHI 2002 Extended Abstracts: Conference on
Human Factors in Computing Systems

, Minneapolis, MN: ACM
Press, April 20-25, 2002, pp. 684-685.

only one card at a time, and the other cards are not directly
visible on the table.

THE STUDY

Participants

Volunteers were recruited from the fifth-grade class at a
demographically-diverse public elementary school in Pitts-
burgh. The 23 volunteers ranged in age from 9 to 11 years
old. There were 12 girls and 11 boys. All were native speak-
ers of English, and none had computer programming expe-
rience. The participants came to the Carnegie Mellon
campus on a Saturday morning for a three-hour session. 12
of the participants used the full-featured HANDS system
(

Full

), and the other 11 used the limited system (

Limited

).

Materials

In the

Full

 condition, a 13-page tutorial was used to teach
the participants the basics of the HANDS system. The tuto-
rial began with an empty program, and the participants built
a program with several flowers and a bee that flies around
collecting nectar from them. The bee is controlled by key-
board commands, and the program displays some basic sta-
tistics about the amount of nectar the flowers have and
which flower has the least.

The tutorial for the

Limited

 condition was derived from the
full-featured tutorial. Those portions utilizing a feature that
was missing in the limited system were replaced with mate-
rial teaching the easiest way to use the system’s remaining
features to achieve the same result. This modification
increased the size of the tutorial by one page, to 14 pages.

After completion of the tutorial, participants were given a
two-page set of five tasks, plus a bonus problem. The solu-
tions to each task would utilize at least one of the features
that are missing in the limited system. All participants
started the tasks by loading a partially implemented pro-
gram. This program was similar to the one they had been
working on, but it had more bees and some pre-defined
cards to help solve the tasks. Once again, these materials
were as similar as possible in the two conditions, differing
only where necessary due to the limitations of the reduced-
feature version of HANDS.

Procedure

The participants worked individually, at their own pace.
When they finished the tutorial, they immediately started on
the tasks. They could continue to refer to the tutorial while
solving the tasks. Participants could stop working before
the three-hour session was over if they finished the tasks, or
if they wanted to quit for any other reason.

The experimenters answered questions and helped with any
problems that the participants encountered, unless the assis-
tance would reveal part of a task solution. In such a case,
the experimenters simply referred the participants to mate-
rial in the tutorial that might be helpful.

RESULTS

There was no significant difference in performance between
boys and girls. In the

Full

 condition, 75% (9 of 12) of the
participants completed the tutorial and began to work on
the tasks; while this ratio was 82% (9 of 11) in the

Limited

condition. This difference is not significant, and the remain-

der of this analysis examines only the participants who
achieved this level of success.

On average, the participants in the

Full

 condition spent 121
minutes working on the tutorial, while the participants in
the

Limited

 condition spent 139 minutes. This difference is
not significant, but it does mean the participants in the

Full

condition had more time remaining to complete the tasks.
Indeed, on average the participants in the

Full

 condition
spent 36 minutes on the tasks, while those in the

Limited

condition spent 30 minutes. However this difference is also
not significant.

Participants received one point for each task problem they
completed correctly. No partial credit was given. With the
bonus problem, the maximum score was 6. In the

Full

 con-
dition, seven participants scored 1 or higher. The scores
ranged from 0 to 6, with an average of 2.1. In the

Limited

condition, only one participant scored received any points.
This person scored 1, and the average of the group was 0.1.
This difference in task performance is significant (p<.05).

Cumulatively, the participants in the

Full

 condition solved
19 tasks in 323 minutes, at a rate of 6 minutes per solved
task. The participants in the

Reduced

 condition solved one
task in 269 minutes, a rate of 269 minutes per solved task.

CONCLUSION

The superior performance of participants in the

Full

 condi-
tion can be attributed to the presence of queries, aggregate
operations, and data visibility in the system they used. This
suggests that these features could improve the usability of
programming systems in general. However, the study does
not tease apart the contributions of the individual features.
It also does not provide any evidence whether the HANDS
system as a whole is better than other programming sys-
tems. These questions will be addressed in future work.

ACKNOWLEDGMENTS

Thanks to Albert Corbett, Leah Miller, and Bernita Myers, and all
of the participants. This research is funded in part by the National
Science Foundation under Grant No. IRI-9900452. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
those of the National Science Foundation.

REFERENCES

1. Pane, J.F. and Myers, B.A. Usability Issues in the
Design of Novice Programming Systems. Carnegie
Mellon University, School of Computer Science Techni-
cal Report CMU-CS-96-132, (Pittsburgh, PA, August
1996).

2. Pane, J.F. and Myers, B.A. Tabular and Textual Methods
for Selecting Objects from a Group.

Proceedings of VL
2000: IEEE International Symposium on Visual Lan-
guages

. (Seattle, WA, September 2000), IEEE Com-
puter Society, 157-164.

3. Pane, J.F., Myers, B.A., and Miller, L.B. Using HCI
Techniques to Design a More Usable Programming Sys-
tem.

submit ted for publicat ion

 (2002), ht tp: / /
www.cs.cmu.edu/~pane/handsdesign.html.

4. Pane, J.F., Ratanamahatana, C.A., and Myers, B.A.
Studying the Language and Structure in Non-Program-
mers’ Solutions to Programming Problems.

Interna-
tional Journal of Human-Computer Studies

,

54,

 2
(February 2001), 237-264.

