

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3891

Also appears as:
Human-Computer Interaction Institute Technical Report CMU-HCII-96-101

Abstract

This report reviews and organizes research about novice programmers. Over the past two decades, many aspects of
novice programming have been investigated, resulting in the discovery of important facts and tradeoffs about what
makes programming difficult to learn, and about the effectiveness of existing languages, environments, and methods
of instruction. However, because this research is dispersed throughout the literature, it is difficult for designers of new
programming systems to consider all of the issues collectively. The result is that most new systems are built primarily
around technical objectives, perhaps considering only a subset of the usability issues summarized here. In addition to
providing a checklist of issues that should be considered in the design of future systems, this report can be used to
help researchers identify fruitful topics of future novice programming research.

The authors can be contacted by electronic mail at:
John Pane <pane+@cs.cmu.edu>
Brad Myers <bam+@cs.cmu.edu>

Usability Issues in the Design of
Novice Programming Systems

John F. Pane
Brad A. Myers

1 August 1996
CMU-CS-96-132

This research was partially sponsored by NCCOSC under Contract No. N66001-94-C-6037, Arpa Order
No. B326, and partially by NSF under grant number IRI-9319969. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the U.S. Government.

Keywords:

 Novice Programming Environments, Empirical Studies of Programmers, End-User
Programming, Programming Languages, Human-Computer Interaction, Usability, Computer Sci-
ence Education

Table of Contents

1. Introduction..1
2. Definitions..2
3. Organization of this Document..4
4. Visibility of System Status...5
4-1. Use Signalling to Highlight Important Information...6
4-2. Beacons..7
4-3. Locality and Hidden Dependencies ...8
4-4. Beware of Misleading Appearances ..10
4-5. Avoid Subtle Distinctions in Syntax..11
4-6. Support Incremental Running and Testing with Immediate Feedback..............................12
5. Match Between System and the Real World ...14
5-1. Choose an Appropriate Metaphor..15
5-2. Consistency with Metaphor ...17
5-3. Consistency with External Knowledge..18
5-4. Closeness of Mapping..20
5-5. Support for Planning..23
5-6. Naturalness of the Programming Language...25
5-7. Visual vs. Textual ..27
5-8. Effectiveness of Notation is Task Dependent..29
5-9. Control Structures ..30
5-10. Loop and Recursion Control Structures...32
5-11. Support Direct Manipulation and Definition by Example...34
5-12. Choosing a Paradigm ...35
5-13. Modularity and Abstraction ...37
5-14. Cognitive Issues...39
5-15. Instructional Design...42
6. User Control and Freedom...44
6-1. Avoid Requiring Premature Commitment ...45
6-2. Viscosity ..46
6-3. Support Secondary Notation..48
7. Consistency and Standards ..50
7-1. Consistency in Notation...51
8. Recognition Rather Than Recall ..53
8-1. Minimize Working Memory Load...54
9. Aesthetic and Minimalist Design...55
9-1. Principle of Conciseness..56
10. Help Users Recognize, Diagnose, and Recover from Errors...58
10-1. Support for Testing and Debugging...59
11. Help and Documentation ...61
11-1. Provide Guiding Knowledge..62
12. Conclusions..63
13. Acknowledgments..63
14. Bibliography ..64

.

1

1. Introduction

This report summarizes research about novice programming. Over the past twenty years many
research studies have discovered useful information about novice programmers, and identified
good and bad aspects of today’s programming systems

1

, both visual and textual. However, this
body of research is widely distributed throughout the literature and is not well organized, making
it difficult to use in guiding the design of new systems. The result is that these research results
generally have not been systematically fed back into the design of new programming systems.
Instead, the design of new languages and environments has most often been driven by technical
objectives, such as ease of parsing, ease of generating fast code, closeness to the machine, ease of
proving correctness, etc. Even systems that were designed for novice users or for teaching have
not attempted to broadly survey this body of research before making critical decisions about the
metaphor or model that the language is based on, the notation that is used in the language, and the
environment. For example, the Turing language [Cordy 1992] was designed, in part, as a teaching
language for children, with attempts to resolve perceived difficulties with Pascal. However, the list
of perceived difficulties is focused primarily on missing features: lack of string handling facilities,
type-safe variant records, modularity, concurrency, and type-safe compilation.

The focus of this report is research about the novice programmer. Research that compares novices
and experts is included, but research that focuses exclusively on experts is not included here
unless it offers general insight into all programmers. Of course, many of the issues mentioned
here are applicable to experts as well.

Inspired by the Smith & Mosier user interface guidelines [Smith 1986b], we have gathered and
organized this information so that it can be used in the design of new programming systems. The
information is organized into topics that span the issues that researchers have explored. While the
topics are interrelated in many ways, we have organized them using a subset of the usability prin-
ciples called

 heuristics

 defined by the

Heuristic Evaluation

 usability engineering method [Nielsen
1994]:

2

• Visibility of system status.
• Match between system and the real world.
• User control and freedom.
• Consistency and standards.
• Recognition rather than recall.
• Aesthetic and minimalist design.
• Help users recognize, diagnose, and recover from errors.
• Help and documentation.

Each of these heuristics is represented by a section of this document. The introduction to each sec-
tion contains Nielsen’s definition of the heuristic, followed by our interpretation of the heuristic in
the domain of novice programming. Following each introductory section are topics summarizing
the novice programming issues that fall into the heuristic.

1. In this report,

system

 will be used to mean the programming language as well as the programming envi-
ronment (set of tools) in which programs are developed.

2. Note that, although this report adopts a subset of the usability

 principles

defined in [Nielsen 1994], it does
not make use of the usability engineering

method

 that is described there.

2

2. Definitions

Beacon A common code fragment that serves to indicate the probable presence of a
certain high-level operation.

Environment The collection of tools used in viewing, constructing, running, and debug-
ging programs.

Expressiveness A measure of the ease in translating a plan into a program. A high-level
language is more expressive than assembly language.

Guiding Knowledge A description of everything a naive user needs to know about the system.
This can be the contents of a manual, tutorial, or verbal instructions.

Heuristics A set of recognized usability principles from [Nielsen 1994].

Inner World The details of programming that are not directly related to the high level
task, such as variable declarations.

Locality A measure of the proximity of related items, e.g. the declaration and use
sites of a variable.

Match-mismatch A phenomenon where different notations are better depending on the task.
Performance is best when the structure of the information sought matches
the structure of the notation. Mismatch leads to poor performance.

Metaphor An real world system that the programmer can use as a reference for how
the programming system will work. For example, a stack of dishes is a met-
aphor for the stack data structure; a variable is often described as a box.

Natural Language A language that originated in human spoken form, e.g. English.

Notation The symbols of a programming language and the syntactic rules for com-
bining them into a program.

Plan A high-level mental strategy for accomplishing a particular programming
goal. In order for the plan to be implemented, it must be elaborated and
translated into the programming language.

Secondary Notation Information that is embedded in the program text that is not part of the syn-
tactic structure that is meaningful to the system. For example, comments
and indentation are forms of secondary notation in most systems.

3

Signalling A secondary notation that uses color and typographic styles to emphasize
certain ideas or to clarify the organization of the program. For example,
keywords are often shown in boldface or a different color than surrounding
text.

Superlativism An expectation that a particular kind of programming system is superior to
another for all programming tasks. Some people expect superlativism of
functional languages over imperative languages.

Viscosity A measure of how much effort is required to make a small change to the
program, e.g. how difficult it is to change a conditional into a loop.

Visibility A measure of how much effort is required to expose desired information.

4

3. Organization of this Document

Each novice programming usability topic is formatted like this page into a number of parts. The
first line contains the item number and title of the issue described. It is followed by a prose
description of the issue, definition of terminology, implications or guidelines, and motivations.

Context of Use: This area indicates where the issue applies, such as notation, metaphor,
environment, education, etc.

Justified by: This area lists how these findings were determined, such as through formal
human-factors empirical studies, observation of individual users, or the
opinion of experts.

Examples: This area contains positive and/or negative examples of this issue.

Exceptions: This area lists exceptions to any guidelines suggested above.

Cross References: This area lists any other related issues with their section numbers.

References: This area contains the full list of references for this section; they are also
embedded above where appropriate.

5

4. Visibility of System Status

“The system should always keep users informed about what is going on, through appropriate
feedback within reasonable time [Nielsen 1994].”

The research in this section identifies information that is important to the programming process,
and suggests ways that the language and the programming environment can help make this infor-
mation visible, such as by keeping related items close together, by revealing or highlighting
important items, by avoiding potentially confusing appearances, and by providing immediate
feedback.

6

4-1. Use Signalling to Highlight Important Information

Typographic signalling is a secondary notation that uses color or typographic styles to emphasize
certain ideas or to clarify the organization of the program. Signalling improves comprehension of
the signalled material, at the expense of non-signalled material. [Fitter 1979] cites the principles
of

redundant recoding

 and

relevance

in good notational schemes: in addition to symbolic infor-
mation there are perceptual cues, thus both perceptual and symbolic characteristics highlight
important information; but only information that is actually useful to the user is highlighted.

Many environments automatically signal keywords of the language, even though this may not be
the most important information that the reader needs [Baecker 1986]. Instead, the environment
should signal semantically important information, or facilitate the signalling of those items that
the user feels are important [Gellenbeck 1991a]. Secondary notation should be used to improve
access to information that is needed but obscured [Green 1990b]. The user should be informed in
advance about the meaning of the signals. Of course, these signals should be correct and not mis-
leading.

Context of Use: Environment, notation

Justified by: Empirical studies, expert opinion

Examples: Many environments highlight syntactic structures of the language, such as
keywords.

An intelligent environment could use color to highlight semantic informa-
tion about the program that is less obvious in the syntactic structure, such
as the bindings of identifiers.

In visual languages, all visible symbols are interpreted by the user as rele-
vant, even if they are incidental [Green 1991].

[Baecker 1986] and [Baecker 1990] describe an elaborate automated sys-
tem that uses graphic design principles to enhance text in C program print-
outs, in an attempt to make them more readable, understandable, appealing,
memorable and maintainable. This system highlights information that the
authors judged to be fundamental, such as: the relationships between com-
ments and the code they discuss; certain tokens such as identifiers; the cor-
rect parsing of complex expressions and statements; use of global
variables, which are a frequent source of errors; and unusual flow of con-
trol. This system improved readability as measured by performance on a
comprehension test.

Cross References: 4-2. “Beacons”
4-4. “Beware of Misleading Appearances”
6-3. “Support Secondary Notation”

References: [Baecker 1986, Baecker 1990, Fitter 1979, Gellenbeck 1991a, Green
1990b, Green 1991]

7

4-2. Beacons

Beacons are common code fragments that serve to indicate the probable presence of certain high-
level operations [Brooks 1983]. Although few have been identified, they are typically patterns that
are not extremely common, and it is their infrequent appearance that makes them useful in con-
firming or suggesting a hypothesis about what the code does [Gellenbeck 1991b]. Thus they are
useful for high-level understanding, but are less useful for detailed tasks like debugging [Wieden-
beck 1986b]. They have been shown to help experts in program comprehension [Boehm-Davis
1996]. These beacons are so strong that misleading ones can induce false comprehension in
experts [Wiedenbeck 1989]. However, there is evidence that novices do not make effective use of
beacons, probably because they have not learned the patterns yet [Gellenbeck 1991b, Wiedenbeck
1986a, Wiedenbeck 1986b]. This is supported in an analysis of eye movements of programmers,
which found that experts spend more time viewing meaningful areas of the program while novices
do not [Crosby 1990]. Even so, using colored cues to mark meaningful sections of code helps
experts to find bugs in those sections [Gilmore 1988]. Perhaps the environment should highlight
meaningful areas such as beacons with color or other cues, to draw novices’ attention to them.
This may also be instructional, because the beacons mark schemata that novices must learn any-
way [Perkins 1986, Samurçay 1989].

Context of Use: Environment

Justified by: Empirical studies

Examples: A beacon for sorting is the swapping operation, which exchanges the val-
ues of two variables:

 temp := a;
 a := b;

 b := temp

;

Cross References: 4-1. “Use Signalling to Highlight Important Information”

References: [Boehm-Davis 1996, Brooks 1983, Crosby 1990, Gellenbeck 1991b,
Gilmore 1988, Perkins 1986, Samurçay 1989, Wiedenbeck 1986a,
Wiedenbeck 1986b, Wiedenbeck 1989]

8

4-3. Locality and Hidden Dependencies

Many researchers argue that locality is important in programming: physical proximity should be
encouraged and remote references should be avoided [Cordy 1992]; strongly-related subcompo-
nents should be kept together, not dispersed [Bonar 1990]; delocalized plans cause difficulty
[Soloway 1988]; and hidden dependencies and poor visibility reduce understanding [Green 1996].
To the extent that information is visible on the screen, working memory limitations are reduced,
allowing novices to perform better [Anderson 1985, Green 1987]. These observations are to some
extent opposed to modularity and abstraction, which tend to hide details and make related pieces
of code more distant from one another [Green 1996]. Part of this problem can be relieved by intel-
ligent use of secondary notation [Green 1990b], or with modern environments that use powerful
navigation features to make the remote code easily accessible [Goldenson 1991, Miller 1994].

[Lewis 1987] proposes replacing

programming by synthesis

 with

programming by modification

,
where a library of examples is provided, from which the programmer chooses an appropriate one
for a starting point, identifies needed modifications, then modifies it to suit the current need. This
elevates locality because it is an important factor in understanding the examples.

Context of Use: Environment

Justified by: Empirical studies, expert opinion

Examples: The Turing language attempts to group things physically close to one
another and avoid remote references where possible. Declarations are not
distinct from statements or runtime constants. For example,

const temp := x; x := y; y := temp

is a valid swap operation at any point in the program, regardless of context
or the type of values being swapped [Cordy 1992].

In Turing, control structures implicitly create a scope, encouraging locality
[Cordy 1992].

Pascal programmers frequently forget initialization preconditions while
coding, requiring them to go back later to insert them [Green 1987]. In con-
trast, this almost never happens in Prolog, where the preconditions are
located adjacent to the focal line. FPL, a graphical language that is equiva-
lent to Pascal, also seems to eliminate this problem, perhaps because the
graphical layout prompts the programmer to remember the initialization
[Cunniff 1989].

Hypercard seriously reduces the visibility of the program text. It takes too
many steps to make a desired item visible [Green 1990a, Green 1996].

Textual languages have hidden dependencies in variables and parameters,
as well as in side effects of functions. Visual languages such as LabView

9

and Prograph do well at avoiding hidden dependencies at a local level, but
not so well at a global level. Textual languages usually have better visibility
than visual languages [Green 1996].

Cross References: 5-5. “Support for Planning”
5-7. “Visual vs. Textual”
5-13. “Modularity and Abstraction”
6-3. “Support Secondary Notation”
8-1. “Minimize Working Memory Load”

References: [Anderson 1985, Bonar 1990, Cordy 1992, Cunniff 1989, Goldenson 1991,
Green 1990a, Green 1990b, Green 1987, Green 1996, Lewis 1987, Miller
1994, Soloway 1988]

10

4-4. Beware of Misleading Appearances

[Fitter 1979] cites a principle of

restriction

 in good notational schemes: the syntax prohibits the
creation of code that could easily be confused with other closely-related forms. A typographical
error or cognitive slip should result in an invalid program, so that the system can detect the error
for the user [Green 1996]. If the error results in a valid but incorrect program, the error will not be
detected until it causes the program to behave in a noticeably incorrect manner.

One common mistake among novices and experts is misunderstanding the program because its
formatting invites an incorrect interpretation. For example, if objects look alike, kids expect them
to behave alike [Smith 1995]. There are two obvious ways to deal with this: 1) the system can
impose a formatting that is consistent with the true meaning of the code; or 2) the system can try
to interpret the formatting of the code the same way that the user would. The first solution may
interfere with allowing secondary notation.

Context of Use: Notation

Justified by: Empirical analysis of frequent novice errors

Examples: Incorrect indentation may lead the user to believe that code is part of a con-
trol structure when it is really outside the control structure [du Boulay
1989a].

Stray wires in graphical program cause confusion [Green 1991].

Some students expect that all statements in a program, including those
inside procedures, are executed in the order they appear in a program; oth-
ers think the procedures are executed when they are called

in addition

to
executing in a top-to-bottom scan [Sleeman 1988]. Some students think
that all statements in the program must be executed at least once, even
those that may have been skipped due to branching: that any statements
which have not yet been executed are executed before the program termi-
nates [Putnam 1989].

Exceptions: Early versions of Fortran are notorious for their rigid column-based nota-
tion, where restriction was extreme. Some apparently harmless errors in
alignment were flagged as errors, while others resulted in unexpected
results.

Cross References: 4-1. “Use Signalling to Highlight Important Information”
4-5. “Avoid Subtle Distinctions in Syntax”
6-3. “Support Secondary Notation”

References: [du Boulay 1989a, Fitter 1979, Green 1996, Green 1991, Putnam 1989,
Sleeman 1988, Smith 1995]

11

4-5. Avoid Subtle Distinctions in Syntax

Notation should avoid subtle distinctions in syntax which might be overlooked or confused by
novices. As described above (see “Beware of Misleading Appearances” on page 10), the principle
of

restriction

 advises against the use of syntax that is so similar to other forms that it is easily con-
fused [Fitter 1979]. Novices get confused when there are two different syntaxes to accomplish the
same effect [Eisenberg 1987]. More planning is required when there are many different legal solu-
tions to a goal, which leads to frequent code changes [Gray 1987].

Context of Use: Notation

Justified by: Empirical studies, observation of individual users

Examples: The difference between the quoted string “123” and the numeric value 123
is a problem [du Boulay 1989a].

Novices have difficulty because Pascal does not permit a comma to be used
as punctuation in a number. For example: 32,000 is illegal while 32000 is
legal [Pane 1996].

A common problem in C is the distinction between the assignment operator

=

, and the equality operator

==

. For example, sometimes the programmer
will writes

if (a = 0)

 instead of

if (a == 0)

, which results in an assign-
ment where comparison was desired. Pascal has a similar distinction
between

:=

 for assignment and

=

 for equality, but this is not so serious due
to restriction: syntax prohibits one of them to be used where the other is
legal. Some systems use a special symbol for assignment to avoid the con-
fusion with equality [Baecker 1986]. As mentioned in “Beware of Mislead-
ing Appearances” on page 10, a typographical error or cognitive slip should
result in an invalid program, so that the system will detect the error for the
user [Green 1996].

In C, indexing of arrays is done with square brackets, but initialization is
done with curly braces:

int a[] = {1,2,3};

In C, it is very easy to accidentally comment out a large block of code. It is
not an error to have a missing close-comment delimiter. Instead, the com-
ment continues to the next occurrence of the close-comment delimiter.
Modern environments use color signalling to make this error visible.

Cross References: 4-4. “Beware of Misleading Appearances”
5-3. “Consistency with External Knowledge”
5-14. “Cognitive Issues”

References: [Baecker 1986, du Boulay 1989a, Eisenberg 1987, Fitter 1979, Gray 1987,
Green 1996, Pane 1996]

12

4-6. Support Incremental Running and Testing with Immediate Feedback

Immediate feedback aids problem solving [Lewis 1987]. The ability to test partial solutions is an
important feature for novices and experts alike. Running the program should be encouraged
because it is a useful debugging strategy [Gugerty 1986b]. When novices adopt a practice of test-
ing their code incrementally, they perform better [Goldenson 1991, Green 1996, Perkins 1986].
This has a bigger impact on performance than good error messages in a batch-compiled delayed-
feedback environment [Davis 1993]. These observations can be interpreted as a call for lisp-like
dynamic languages [Smith 1992], but in fact the environment can provide this feature in tradi-
tional compiled languages such as Pascal [Goldenson 1991].

The computational machine should reveal its internal workings, and should do it in terms of the
language itself [du Boulay 1989b]. A powerful graphical debugger will be used by novices not
only for debugging, but also as an aid to program comprehension even in the absence of bugs
[Goldenson 1991]. However, novices must be trained to use these tools effectively [Miller 1994].
[Brusilovsky 1994a] points out that an important feature of mini-languages for novices is that they
be capable of operating in

dialog

mode, where individual commands can be issued by the user and
are executed immediately with visible feedback. [Clements 1995] lists this as a design principle
for novice programming environments.

In traditional compiled languages, beginners are also confused by the need to recompile after
making a change, and the need for their program to be complete before it can be run [du Boulay
1989a]. The Geo-Logo environment addresses this problem by updating the program’s output as
soon as code is changed [Clements 1995].

Context of Use: Environment, programming paradigm

Justified by: Empirical studies

Examples: Spreadsheets provide immediate feedback, in contrast to other environ-
ments where the programmer must recompile, re-execute, and re-enter data
in order to test a change. This is an important factor in the success of
spreadsheets [Lewis 1987, Nardi 1993].

A powerful graphical debugger such as the one in the MacGnome environ-
ments shows live graphical views of the data structures which are continu-
ously updated while the program is running. The debugger attempts to
display the data in a semantically meaningful way, such as displaying
records, linked lists, binary trees, and multidimensional arrays in the same
way they are pictured in textbooks and in the classroom. Recursive proce-
dure calls are also easier to understand because the call stack graphically
represented in the debugger. These displays facilitate understanding of the
data structures and the program that manipulates them [Miller 1994, Myers
1988].

Cross References: 5-12. “Choosing a Paradigm”
10-1. “Support for Testing and Debugging”

13

References: [Brusilovsky 1994a, Clements 1995, Davis 1993, du Boulay 1989a, du
Boulay 1989b, Goldenson 1991, Green 1996, Gugerty 1986b, Lewis 1987,
Miller 1994, Myers 1988, Nardi 1993, Perkins 1986, Smith 1992]

14

5. Match Between System and the Real World

“The system should speak the user’s language, with words, phrases, and concepts familiar to the
user, rather than system-oriented terms. Follow real-world conventions, making information
appear in a natural and logical order [Nielsen 1994].”

The research in this section investigates the expectations and behaviors that a novice brings to
programming, such as natural language and knowledge of the real world. It discusses ways that
the programming system can effectively exploit the expectations and support the behaviors, in
order to maximize the net positive transfer to programming. Several points are made about com-
mon programming constructs that do not match well with the way users tend to express concepts
in natural language. In addition, the task-dependent nature of the effectiveness of the program-
ming system is examined. While this section covers consistency between the programming sys-
tem and the outside world, “Consistency and Standards” on page 50 covers internal consistency.
[Payne 1986] describes a formal method for assessing both of these forms of consistency.

15

5-1. Choose an Appropriate Metaphor

A metaphor is a familiar analogy for how the programming system works. When the metaphor is
good, users can infer how the programming system works by referring to their existing knowledge
and expectations about how the modeled system works; otherwise they might be required to learn
a collection of rules that seem arbitrary. In order to maximize this transfer of knowledge, the met-
aphor should be based on, and conceptually close to, a concrete real-world system that is widely
known by the user audience [Smith 1994]. This familiarity requirement is violated by Prolog,
where misconceptions abound in users’ models of searching, matching, and backtracking [Fung
1990, Fung 1987, Mendelsohn 1990]. An appropriate concrete model can have a strong positive
effect on the usability of a programming language [Mayer 1989].

Context of Use: Computational metaphor of the language

Justified by: Empirical studies, expert opinion

Examples: Traditional programming languages use a computational model of the von
Neumann machine, which has no physical world counterpart. Learning this
computational model is an important stumbling block for novices [du Bou-
lay 1989a, du Boulay 1989b].

The spreadsheet is widely viewed as a successful instance of a program-
ming language that is useful to non-programmers. An important advantage
of the spreadsheet is that it is based on a metaphor that fits very well with
the tasks of its audience: page-oriented numerical computation for financial
or other purposes [Nardi 1993]. Use of spreadsheets requires mastery of
only two concepts: cells as variables and functions as relations between
variables. Typically users use fewer than ten functions, including basic
arithmetic and rounding. It is not necessary to string together low-level
primitives, allocate memory, name variables, include files, etc. It is a famil-
iar, concrete, visible representation that allows users to feel as though they
are working directly on the task [Lewis 1987]. Unfortunately, this meta-
phor does not seem to extend well to general-purpose computation.

Logo uses the metaphor of a turtle in a two-dimensional world. Even this
concrete model has its difficulties. For example, when the turtle is facing
south, the user’s left is the turtle’s right, and vice versa [Mendelsohn 1990].
[Resnick 1994] describes the extension of the Logo metaphor to parallel
computing.

Boxer uses a two-dimensional spatial metaphor for the organization of pro-
grams, but is not constrained to a single-level hierarchy of cells as spread-
sheets are. All computational objects are represented in terms of a
hierarchy of boxes, which can contain data such as text or graphics, or can
contain behaviors in the form of Logo-like programs. It uses the metaphor
of a port for accessing the contents of a box from a distant place in space
[diSessa 1989].

16

[Brusilovsky 1994a] surveys a collection of mini-languages for novices
that are based on the metaphor of a robot, and claims that they are intrisi-
cally engaging and visually appealing. One such language that achieved
widespread usage is Karel the Robot [Pattis 1995].

[Finzer 1993] describes “Programming by Rehearsal”, where the program-
ming process consists of moving “performers” around on “stages” and
teaching them how to interact by sending “cues” to one another.

Pursuit is a visual shell that uses a comic-strip metaphor to represent pro-
grams [Modugno 1996].

Exceptions: Several systems are cited by [Mendelsohn 1990] as moving from the
abstract toward the concrete: ARK [Smith 1986a]; Boxer [diSessa 1989];
ThingLab [Borning 1985]. He concludes that in these concrete systems,
semantic complexities are not banished, users can not see the plans, and the
systems have poor visibility and viscosity.

Cross References: 5-2. “Consistency with Metaphor”
5-11. “Support Direct Manipulation and Definition by Example”

References: [Borning 1985, Brusilovsky 1994a, diSessa 1989, du Boulay 1989a, du
Boulay 1989b, Finzer 1993, Fung 1990, Fung 1987, Lewis 1987, Mayer
1989, Mendelsohn 1990, Modugno 1996, Nardi 1993, Pattis 1995, Resnick
1994, Smith 1994, Smith 1986a]

17

5-2. Consistency with Metaphor

The language should be consistent with its metaphorical model. It should abide by any sugges-
tions that can be derived from the metaphor. [Halasz 1982] lists three classic problems with meta-
phors: the target domain has features not in the source domain, the source domain has features not
in the target domain, and some features exist in both domains but work very differently. Novices
frequently encounter difficulty with the limits of the metaphor or analogy: mistakes arise out of
attempting to extract too much from it.

Context of Use: Metaphor and notation

Justified by: Empirical analysis of frequent novice errors

Examples: Novices expect the computer to understand the meaning of a variable based
on its name. For example, students expect the read statement to select val-
ues based on the names of the variables. With

READLN(odd, even)

and
the input “2 3”, they expect the computer to read 3 into

odd

 and 2 into

even

[Putnam 1989, Sleeman 1988].

When a variable is described as a box or a slate, users assume that it can
hold more than one value at a time like the real-world counterparts. For
example, students will expect a read statement to accept multiple values
into the variables being read into. In

READLN(odd, even)

 with the input “2
3 5 10”, students expect the computer to read 3 and 5 into

odd

 and 2 and 10
into

even

. When they encounter these multiple-value variables in a subse-
quent conditional statement, students variously think that:
• only the first value is used,
• the comparison cannot be made, or
• the program implicitly loops until the values in the variables have been
consumed [Putnam 1989, Sleeman 1988].

When a variable is described as a box, users sometimes think that a
sequence such as

a=2

 followed by

b=a

 means that

a

 no longer holds the
value

2

.

When computers are anthropomorphized, novices tend to expect computers
to be non-rigid like humans, and thus are not precise in describing a task
[du Boulay 1989a].

When a program is described as a recipe, novices expect that it is ok to
leave out certain details, the way “remove egg from its shell” is left out of
most recipes that use eggs [du Boulay 1989a].

Cross References: 5-1. “Choose an Appropriate Metaphor”
5-3. “Consistency with External Knowledge”

References: [du Boulay 1989a, Halasz 1982, Putnam 1989, Sleeman 1988]

18

5-3. Consistency with External Knowledge

Users bring to the programming task external knowledge that might interfere with correct under-
standing of the language. Most beginner programming errors can be interpreted as incorrect trans-
fers from other representation/processing systems to the computer device [Bonar 1989, Mayer
1987]. Where their knowledge is lacking, it is common for novices to guess incorrect language
syntax or semantics; these errors are indicators of transfers from other knowledge domains that
are not compatible with the programming language [Hoc 1990].

Languages often use keywords that are loaded with meaning from natural language, and notation
that is like math. While the mnemonic value of keywords is useful, it is important to beware of
what is called the

human interpreter problem

, where reading the program in a natural language
manner leads to an interpretation that is inconsistent with the correct meaning of the program
[Bonar 1988b, Spohrer 1989a, Spohrer 1986b, Taylor 1990]. Students attribute to the machine the
reasoning power of an average human [Sleeman 1988]. A large portion of bugs arise from incon-
sistency within the programming language or inconsistency between the programming language
and the user’s outside knowledge of the world or natural language. [Pea 1986] discusses lan-
guage-independent conceptual bugs which affect the ways in which novices perceive the comput-
ing domain.

Context of Use: Notation, metaphor

Justified by: Empirical studies, analysis of frequent novice errors, expert opinion

Examples: There is a litany of inconsistencies between mathematical knowledge and
the use of similar notation in programming languages like Basic, Pascal
and C. Some examples lie in the use of variables [du Boulay 1989a, Put-
nam 1989]:
•

a=2

 and

2=a

 are not symmetric in assignment as they are in math;
• math does not use the concept of previous and next values of a variable,
such as in the assignment statement

a=a+1

;
• math treats the identity of two symbols as permanent for the duration of
the problem, while it is transient in programming, such as in the assign-
ment statement

a=b

;
• math offers no hint about the direction of assignment – whether the value
of

b

 goes into

a

 or vice versa – in the assignment statement

a=b

;
• initialization of variables is a concept that is foreign to math or counting.

In math, the symbol “+” can be used as a summation operator with an arbi-
trary number of arguments. In many programming languages, “+” is only a
binary operator [Hoc 1990]. Notably, spreadsheets do not restrict the addi-
tion to be a binary operator [Lewis 1987].

As mentioned in “Avoid Subtle Distinctions in Syntax” on page 11, Pascal
does not permit a comma to be used as punctuation in a number [Pane
1996].

19

In natural language,

then

 and

and

 are often used in the sense of “what
next”, unlike their use in Pascal or C: “I went to the shop and then I bought
a paper”; “wash your hands and set the table” [Bonar 1989, du Boulay
1989a].

In Pascal,

Repeat

 is used before the item(s) being repeated, but in natural
language the opposite is usually true [Bonar 1988b, du Boulay 1989a].

In Logo,

STOP

 causes the flow of control to return from the current proce-
dure to the caller, but kids misinterpret this to mean that execution is halted
completely [Kurland 1989].

One example of how programming does not support the natural way of
expressing a task is sorting. When users are asked to sort a series of real
boxes, inserting a box pushes the other boxes to make room. When dealing
with arrays, this operation must be carried out explicitly by the program-
mer [Hoc 1990].

[Spohrer 1986b] found that many novice bugs occur when the user gener-
ates code in an order that is different than the built-in operator precedence
in the language. The user expects that the program will execute in the order
of generation, rather than according to the operator precedence rules of the
language. This suggests that all operator precedence should be explicit
rather than implicit. For example, expressions could be automatically
parenthesized to show their evaluation order.

Cross References: 4-5. “Avoid Subtle Distinctions in Syntax”
5-1. “Choose an Appropriate Metaphor”
5-2. “Consistency with Metaphor”
5-6. “Naturalness of the Programming Language”

References: [Bonar 1989, Bonar 1988b, du Boulay 1989a, Hoc 1990, Kurland 1989,
Lewis 1987, Mayer 1987, Pane 1996, Pea 1986, Putnam 1989, Sleeman
1988, Spohrer 1989a, Spohrer 1986b, Taylor 1990]

20

5-4. Closeness of Mapping
[Hoc 1990] describes programming as adaption of a plan from a familiar strategy to one that is
compatible with the computer. This adaption is a refinement process that can lead to the detection
of incompatibilities between the real-world plan and the computer’s capabilities, or to a program
solution that is not optimal. Similarly, [Green 1996] describes programming as mapping of opera-
tions in the problem domain into corresponding operations in the program domain. Thus it should
be helpful to have a closeness of mapping between the task domain and program entities. [Merrill
1993] proposes as a design principle for all learning environments that the translation process
from the student’s internal plans to the solution’s external representation be minimized. The
extent to which the language facilitates this is called the expressiveness of the language [Bell
1991].

Users have difficulty understanding low-level primitives and how to compose them to form high-
level components of a plan [Hoc 1990, Nardi 1993]. This is one of the great cognitive barriers to
programming [Lewis 1987]. From a psychological point of view, the composition of these primi-
tives into high-level operations is difficult for the following reasons [Lewis 1987]:

• synthesis is inherently hard, because a large number of possible combinations must be
explored;
• since primitives are unrelated to the task, they are difficult to understand;
• for the same reason it is hard to see what combination of primitives will produce the cor-
rect task-related behavior;
• synthesis must be carried out with little immediate feedback; when feedback becomes
available it is informative only about the behavior of the big assembly rather than about
the many little choices that had to be made in putting it together;
• since the fundamental maneuver is replacement of “what is wanted” by “what to do”,
information about intent is not expressed directly and must be maintained separately, men-
tally or physically; and,
• it requires plan merging: constructions must be formed that carry out multiple purposes
simultaneously.

In addition, in traditional programming languages [Lewis 1987]:
• synthesis results in high viscosity because primitives and rules of combination are com-
plex;
• commonly used primitives enforce the inner world / outer world distinction in which data
manipulable by the system cannot be manipulated by the user;
• reliance on sequence as the fundamental mode of combination of primitives requires
users to specify much irrelevant information; and,
• it takes great care and discipline to make sure the code is comprehensible.

Instead, users should be permitted to formulate the problem using the objects, relationships, and
processes of the problem domain [Lewis 1987]. [Fitter 1979] cites a principle of revelation in
good notational schemes: the notation perceptually mimics the solution structure.

Educators often address these problems by choosing to begin teaching with a small subset of the
language, and to incrementally expand the subset until the entire language is finally exposed
[Brusilovsky 1994b]. Sometimes, special programming environments are built around a starting
subset of the full language. Another approach is to invent a special mini-language for teaching

21

which is not a proper subset of any full language. Usually these provide only the minimal set of
primitives that are necessary to embody the desired programming concepts, and make all opera-
tions visible as concrete actions on the screen. [Brusilovsky 1994a] surveys a collection of mini-
languages that are used as an introduction to programming (e.g. Karel the Robot [Pattis 1995]).

A related requirement is to have built-in types and abstractions that are appropriate for the domain
[Cordy 1992]. [Nardi 1993] points out that successful end-user systems are task-specific and
empower the user. They lack the power of general purpose programming languages, but also lack
the steep learning curve. This suggests the creation of a task-specific programming language for
every task domain, which is incompatible with the desire to make a general-purpose language and
environment. One approach to this dilemma is to provide high-level, task-specific, user-extensible
libraries for the desired domains, and to try to eliminate the need for novices to learn a lot of low-
level primitives [Green 1996, Green 1991, Guzdial 1992, Mendelsohn 1990].

Context of Use: Notation and environment

Justified by: Observation of individual users.

Examples: Here are two examples of the refinement that is required to adapt a familiar
strategy or plan to a programming solution:
• Making room in an array for insertion. The programmer must satisfy pre-
conditions that do not exist in the original situation.
• using “+” as a binary operator, with initialization of an accumulator vari-
able, instead of simply requesting summation. The user must decompose
elementary actions into even more elementary ones [Hoc 1990, Lewis
1987].

The spreadsheet has a close mapping to the domain of numerical tables in
accounting, and the common operations that are performed in that domain.

There is a great distance in mapping the built-in operations of a language
like Pascal to tasks such as manipulating strings.

[Green 1996] uses cognitive dimensions to identify the following examples
of closeness of mapping:
• poor: adding a vector in C or Basic; looping in LabView; success/failure
in Prograph.
• good: electronics instrumentation in LabView; persistent variables in
Prograph; locality of program plans in Prograph and LabView.

[Nardi 1993] claims that Hypercard’s language, HyperTalk, is too much
like a conventional programming language and not close enough to the
end-user’s needs.

High-level languages are more expressive than assembly languages. For
example, it takes fewer statements to implement a loop in a high-level lan-
guage.

22

Exceptions: Even with high-level task-specific components, there is evidence that nov-
ices have difficulty assembling them into programs [Spohrer 1989a].

Cross References: 4-1. “Use Signalling to Highlight Important Information”
4-6. “Support Incremental Running and Testing with Immediate Feedback”
5-1. “Choose an Appropriate Metaphor”
5-3. “Consistency with External Knowledge”
5-14. “Cognitive Issues”
6-2. “Viscosity”
9-1. “Principle of Conciseness”

References: [Bell 1991, Brusilovsky 1994a, Brusilovsky 1994b, Cordy 1992, Fitter
1979, Green 1996, Green 1991, Guzdial 1992, Hoc 1990, Lewis 1987,
Mendelsohn 1990, Merrill 1993, Nardi 1993, Pattis 1995, Spohrer 1989a]

23

5-5. Support for Planning
Some researchers describe expert programming as an opportunistic activity [Green 1990b, Green
1996]. However, [Ball 1995] claims that experts actually are using sophisticated strategies to
schedule and prioritize their activities. [Soloway 1984] and [Rist 1995] describe programming as
the composition of plans or schemas. Plan usage is pervasive among novice programmers, and
when they lack an appropriate plan they use pre-programming knowledge to fabricate one which
may be buggy [Bonar 1989]. An additional source of many novice bugs is difficulty with plan
composition, where the programmer is unable to anticipate all of the interdependencies when
combining programming plans [Spohrer 1986a, Spohrer 1989a, Spohrer 1989b, Spohrer 1986b].
This interleaving of plans should be minimized [Green 1987].

The programming environment should allow programmers to work directly in plan terms [Men-
delsohn 1990, Parker 1987]. Many aspects of program planning are difficult for novices: they do
not know how to choose key components, they are stumped by a blank screen, and they need a
process to guide their programming. An environment that assists in this planning process yielded
improvements in novice program generation [Guzdial 1992]. Universe [Parker 1987], TEd [Orm-
erod 1996], and Bridge [Bonar 1987, Bonar 1990, Bonar 1988a] are similar systems. Bridge pro-
vides an intermediate representation for plans that avoids dispersing them: icons that fit together
like jigsaw puzzles, with smaller icons for values and constants. [Corbett 1995] describes a tutor-
ing environment where students are required to explicitly state subgoals, which most environ-
ments leave implicit. An empirical study showed that students reached mastery more quickly in
this environment. Similarly, the GIL Lisp tutoring environment encourages users to make explicit
explanations and predictions of ordinarily implicit behaviors and states, allows access to internal
states that would otherwise be invisible, and has an on-screen representation of the structure of
partial solutions to help students track their solution process [Merrill 1993, Merrill 1992, Reiser
1992]. These features lead to superior performance in both textual and diagrammatic program-
ming environments [Merrill 1994].

Developing a suite of idioms, or plans, for solving small-scale goals are one of the important diffi-
culties for novice programmers [du Boulay 1989a]. Selection of an appropriate plan from the suite
is difficult [Scholtz 1993]. These skills should be taught explicitly [Perkins 1989], and required
parts of a plan should be prompted by the syntax (e.g. initialization) [Green 1987].

The Prolog community introduced the concept of programming techniques, which are a small set
of meta-plans that are language-dependent but domain-independent [Brna 1991]. [Bowles 1994]
and [Ormerod 1996] describe systems that use techniques as a framework to support program
editing, analyzing novice errors, in tracing and debugging, and in teaching programming skills.

Context of Use: Environment

Justified by: Empirical studies, expert opinion

Cross References: 5-3. “Consistency with External Knowledge”
5-4. “Closeness of Mapping”

24

References: [Ball 1995, Bonar 1987, Bonar 1990, Bonar 1989, Bonar 1988a, Bowles
1994, Brna 1991, Corbett 1995, du Boulay 1989a, Green 1990b, Green
1987, Green 1996, Guzdial 1992, Mendelsohn 1990, Merrill 1993, Merrill
1994, Merrill 1992, Ormerod 1996, Parker 1987, Perkins 1989, Reiser
1992, Rist 1995, Scholtz 1993, Soloway 1984, Spohrer 1986a, Spohrer
1989a, Spohrer 1989b, Spohrer 1986b]

25

5-6. Naturalness of the Programming Language
[Ledgard 1980] observed that natural language is better than a notational editing language for text
editing, but [Curtis 1988] found that a textual pseudocode and graphical flowcharts were both bet-
ter than natural language in program comprehension. When novices get stuck in their program-
ming task, they rely on natural-language plans that they acquired before exposure to programming
[Bonar 1989]. When the natural language plan is not compatible with the programming language,
a bug will result. Several studies have found that when non-programmers are asked to write step-
by-step informal natural language procedures, many different people use the same phrases to indi-
cate looping structures and other standard programming tasks [Biermann 1983, Bonar 1986,
Miller 1981]. Furthermore, students confuse phrases in natural language with the English key-
words of a language like Pascal, and thus write their code as if it has the semantics of natural lan-
guage [Bonar 1988b].

[Miller 1981] finds that nonprogrammers omit many actions from natural language problem solu-
tions, thus relying on a human-like interpreter to fill in the missing details. For example, they use
fewer control structures in written instructions than are required in actual program solutions.
However, [Galotti 1985] was able to elicit nonprogrammers to use more control instructions by
describing the instructee as a naive alien. One possible explanation is that novices use rules of
cooperative conversation (see [Grice 1975]), expecting the computer to possess a modicum of
common sense, and thus don't state the obvious. However, even when control structures are
present, [Galotti 1985] found that instructions about iteration, or about what to do if a test condi-
tion is not met, are often vague or unspecified.

[Nardi 1993] points out serious problems with attempts to model programming languages after
natural languages: the computer and programmer do not have the shared context that is present in
human-human conversation, and it is not obvious where the limits of the computer’s understand-
ing are. Indeed there will be such limits as long as artificial intelligence has not been achieved.

However, novices are capable of learning and using programming languages that are not based on
natural language, as long as they are task-specific and high-level [Nardi 1993]. Even these should
support the ways that people naturally express problem solutions [Hoc 1983, Miller 1981]. When
given a choice of programming methods to accomplish a task (e.g. sorting), novices tend to use
the method they would use by hand, even if it is more complicated than another method [Hoc
1990, Nyuyen-Xuan 1987].

Context of Use: Notation

Justified by: Empirical studies and observations of individual users

Examples: Many novice bugs are caused by a confusion of the correct choice of AND or
OR in combining boolean tests. An example of this problem is when the
programmer is checking for valid input from a menu of choices. Often nov-
ices will code if (ch <> 'a') OR (ch <> 'b') OR (ch <> 'c') , when
the correct logical connector is AND. This problem appears to result from
users’ lack of an operational understanding of DeMorgan’s Laws of logical
identity, which describe the way the negation interacts with AND and OR

26

in propositions. Since the english language treats this situation informally
(“if the choice is not a, b, or c”), the confusion is not unexpected [Spohrer
1986a, Spohrer 1986b].

One way to avoid the above problem in Pascal is to use a set, where
if (ch <> 'a') AND (ch <> 'b') AND (ch <> 'c') becomes
if NOT (ch IN ['a', 'b', 'c']). But there are two things to note
about this syntax. First, the most natural way to express this in English (“if
the character is not in the set...”) leads novices to misplace the NOT, coding
the expression illegally as if (ch NOT IN ['a', 'b', 'c']). Second,
even when the NOT is positioned correctly in the expression, parenthesis are
required for it to be evaluated correctly; such issues of operator precedence
rarely surface in natural language.

Another confusion is that programming languages often use OR for inclu-
sive-or, while natural languages use the word for exclusive-or.

Cross References: 5-3. “Consistency with External Knowledge”
5-4. “Closeness of Mapping”
5-5. “Support for Planning”

References: [Biermann 1983, Bonar 1986, Bonar 1989, Bonar 1988b, Curtis 1988,
Galotti 1985, Grice 1975, Hoc 1983, Hoc 1990, Ledgard 1980, Miller
1981, Nardi 1993, Nyuyen-Xuan 1987, Spohrer 1986a, Spohrer 1986b]

27

5-7. Visual vs. Textual
[Myers 1990] presents a taxonomy of visual programming languages. There is a widespread ten-
dency to expect visual languages to be superior to text for novice programming. [Green 1991]
calls this graphical superlativism, and cites the following claims in favor of visual languages over
textual languages: two-dimensional visual perception is more natural and efficient than reading
text; it is easier to get an overview of program structure in visual systems; it is easier to read a
visual program because purely syntactic devices are reduced; the number of variable names is
reduced in visual programs; in visual systems, relationships between components are expressed
by lines rather than symbols, making it easier to follow the routes; iconic representation of com-
ponents may be easier to discriminate and recognize than textual names and symbolically-
expressed relationships; extra information is conveyed by the spatial layout of the visual program
(secondary notation). [Blackwell 1996] is a comprehensive survey of these claims from the visual
programming literature. If the claims are true, the benefits may be particularly strong for nov-
ices.In a comparison of text-based and visual rapid-prototyping tools on a simple programming
task, novice performance was closer to that of experts with the visual tools [Hasan 1996]. In Pur-
suit, a visual language based on a comic-strip metaphor was shown to be more effective than an
equivalent textual language for novice generation of shell script programs [Modugno 1996].

Graphical superlativism was supported in [Cunniff 1987], where novices were able to recognize
certain simple structures and to hand-execute short program segments more quickly and more
accurately in a graphical language than in an equivalent textual language. However, there is a con-
siderable amount of research indicating that graphical superlativism does not hold in larger more
complex programs or for “deprogramming” tasks, where the novice must derive high-level goals
and plans from the program text in order to fully understand and extend the program.

Diagrammatic notations are good only for certain purposes [Gilmore 1984]. [Green 1991] claims
that formalisms based on control flow are linear with exceptions, so they are easily represented in
a textual language; while formalisms based on data flow may be more appropriately represented
in a visual language. However, [Curtis 1988] found that a flowchart representation was superior to
textual pseudocode when the task involved tracing flow of control, but not for discerning high-
level relationships. If there is any advantage of flowcharts over text it is at the detailed level, rather
than at the overview level [Green 1992]. This may be because flowcharts are poor for modularity
[Green 1990a]. There is little advantage in using flowcharts for supplementary documentation,
although they are useful when they display knowledge that is difficult to extract from the program
text [Shneiderman 1986, Shneiderman 1977]. [Atwood 1978] found that a textual program design
language was better than a flowchart. Overall, graphical programs take longer to understand than
textual ones [Green 1992, Green 1991]. [Moher 1993] compared program comprehension in
graphical vs. textual representations and found that graphics were no better than text and some-
times considerably worse.

Flowcharts are of little help in debugging. They help to trace execution flow and localize the area
where the bug is located, but are insufficient to identify the actual bug [Brooke 1980a, Brooke
1980b].

Visual languages are not more natural than text [Nardi 1993]. Most visual languages have high

28

viscosity – they require a lot of effort in layout rearrangement when making changes; and they
impose an extra burden on the user to guess ahead so that they format the program nicely and
avoid future rearrangement [Green 1996]. Another problem with visual languages is their ineffi-
cient use of screen space [Nardi 1993].

[Nardi 1993] points out that spreadsheets are based on a textual language, and yet are very suc-
cessful. However, spreadsheet programmers make use of visual imagery in planning manipula-
tions, implying that mental images of program layout are an important resource [Saariluoma
1994].

Context of Use: Notation, environment

Justified by: Empirical studies, observations of individual users, expert opinion

Examples: KidSim is a programming environment that attempts to be completely
visual [Smith 1994]. It allows the user to construct “simulations” of agents
in a two-dimensional grid. This was motivated by results in an earlier sys-
tem named Playground [Fenton 1989], where children had great difficulty
with a scripting language, even though a structure editor was provided to
assist with syntactic correctness. However, in empirical tests of KidSim,
the authors found that text was helpful in some situations. For example,
adding the text “and if” at the beginning of each conditional expression
made rules easier to understand [Cypher 1995]. While KidSim’s mostly-
visual approach appears to be productive in this limited domain, it is not at
all clear that a useful general purpose programming environment could be
completely visual.

In visual languages, the graphics must be well-designed and recognizable
[Green 1991].

Flow of data is very difficult to perceive in standard textual languages, but
data flow languages make this information easily accessible [Green 1990a].

Cross References: 5-8. “Effectiveness of Notation is Task Dependent”
6-1. “Avoid Requiring Premature Commitment”
6-2. “Viscosity”
6-3. “Support Secondary Notation”

References: [Atwood 1978, Blackwell 1996, Brooke 1980a, Brooke 1980b, Cunniff
1987, Curtis 1988, Cypher 1995, Fenton 1989, Gilmore 1984, Green
1990a, Green 1992, Green 1996, Green 1991, Hasan 1996, Modugno 1996,
Moher 1993, Myers 1990, Nardi 1993, Saariluoma 1994, Shneiderman
1986, Shneiderman 1977, Smith 1994]

29

5-8. Effectiveness of Notation is Task Dependent
[Green 1992] describes the match-mismatch phenomenon, where different notations are better
depending on the task. Performance is best when the structure of information sought matches the
structure of the notation, and mismatch leads to poor performance. There are several examples of
this in “Visual vs. Textual” on page 27. However, this effect may be diminished by other factors
such as prior experience and the programmer’s dominant mental representation of the program
[Good 1996]. While these analyses are based on program understanding, rather than program gen-
eration, there is a substantial amount of parsing and understanding during the coding process. For
example, [Green 1987] proposes a model of programming where, due to working memory limita-
tions, the programmer forgets some parts of the program that are already written, and is forced to
parse them in order to recover their details. That research found that the parsing problem is more
severe in Basic and Prolog than in Pascal. The task-dependent effectiveness of notation suggests
that a programming environment that supports multiple (e.g. visual and textual) representations of
the program might be a fruitful endeavor.

Context of Use: Notation, environment

Justified by: Empirical studies

Examples: Traditional structured languages with nested conditionals support forward
analysis of sequence information, e.g. “given these inputs, what is the
result”. Declarative languages support backward analysis of circumstantial
information, e.g. “given this output, what must the inputs have been”
[Green 1992].

Features that facilitate the parsing task may work contrary to the code gen-
eration task. For example, the features that make Pascal easier to parse into
plan structures may be the very features that inhibit linear generation of
code. In many other notations it seems easier to develop code than to
recover its meaning [Green 1990b].

Examples: 5-4. “Closeness of Mapping”
5-5. “Support for Planning”
5-7. “Visual vs. Textual”
8-1. “Minimize Working Memory Load”

References: [Good 1996, Green 1990b, Green 1987, Green 1992]

30

5-9. Control Structures
One area difference between spreadsheets and many other programming languages is control
structures. The lack of control structures in spreadsheets is an advantage [Nardi 1993]. [Lewis
1987] also points this out, and claims that spreadsheets are the model of the future because they
allow the learner to suppress the inner world of programming, the world of variable declarations,
loops, and I/O. Relationships among variables can be set up declaratively, and the system will
maintain consistency. [Wandke 1988] cites a dramatic increase in cognitive effort when using con-
trol structures, leading to a reluctance to define macros for repetitive tasks even if it would dra-
matically reduce the number of keystrokes required to perform a task.

[Rogalski 1990] found that:
• high-level control structures are more difficult to express than the “goto” or “jump” style
of control, but the latter is more difficult for managing complex control flow correctly;
• control structures that use positive alternatives present fewer difficulties than negative
ones (e.g. repeat until X is easier to understand than while not X , especially if X is a
compound expression);
• difficulty increases with depth of nesting; and
• students with a better background in math learn new control structures faster.

[Sime 1977a] and [Sime 1977b] confirm that high-level control structures help the novice to man-
age flow of control, and also found that a structure editor assisted novices in generating correct
nested control structures.

Many novice errors with control structures can actually be attributed to misconception of vari-
ables. Describing a variable as a name or an address is the first step toward fixing this, although a
more complex model is required when variables occur in iterative or recursive programs in imper-
ative languages: the variable is no longer an address with a value, but needs to be seen as a func-
tion of execution, or a sequence of values [Samurçay 1989].

Indeed, most introductory programming textbooks focus a great deal of attention on the use and
understanding of control structures, suggesting that details about how control structures work is
an area of great difficulty for novices. However, in a study of high-frequency bugs, [Spohrer
1986a, Spohrer 1989a, Spohrer 1986b] found that only about one-third of bugs arise from novice
misunderstandings of control structures. [Arblaster 1979] found that any type of structure is better
than no structure at all, and that hierarchical structuring is not better than other types of structur-
ing.

Context of Use: Notation

Justified by: Empirical studies, observations of individual users

Examples: With IF statements, students make the following errors [Putnam 1989,
Sleeman 1988]:
• expect the program to halt with an error if the condition on the IF state-
ment is false and there is no ELSE clause;
• expect both the THEN and ELSE clauses to be executed;

31

• expect the THEN clause to execute whether or not the condition is true;
• treat a statement after an ELSE-less IF statement as though it is the ELSE
clause.

Exceptions: Prolog is an attempt at suppressing the inner world of programming, and is
notoriously difficult for novices.

Cross References: 5-3. “Consistency with External Knowledge”
5-4. “Closeness of Mapping”
5-6. “Naturalness of the Programming Language”
5-10. “Loop and Recursion Control Structures”

References: [Arblaster 1979, Lewis 1987, Nardi 1993, Putnam 1989, Rogalski 1990,
Samurçay 1989, Sime 1977a, Sime 1977b, Sleeman 1988, Spohrer 1986a,
Spohrer 1989a, Spohrer 1986b, Wandke 1988]

32

5-10. Loop and Recursion Control Structures
A common area of difficulty for novices is looping. Part of this can be attributed to an inability to
generalize, which is evidenced by a tendency for novices to make a list of repeated instructions
instead of coding a loop [Hoc 1989, Onorato 1986], or to an inability to develop an adequate men-
tal model of the looping structure [Kessler 1989, Pirolli 1985]. Sometimes the bugs in novices’
mental models are subtle and difficult to detect [Kahney 1989]. However, a large part of the diffi-
culty of loops may be overcome by designing the looping control structure(s) carefully.

Pascal provides a while loop, where the looping condition is checked at the top of the loop (top-
exit); and a repeat loop, where the looping condition is checked at the bottom (bottom-exit).
Other possibilities are: a loop that can exit from a check in the middle of the loop (middle-exit); or
a loop that exits from anywhere as soon as the condition fails (daemon-exit). In describing a plan,
novices use a bottom-exit strategy when it seems easier, but then revert to a middle-exit strategy
for all other situations [Wu 1991]. [Rogalski 1990] reinforces this with the finding that the top-
exit strategy is more difficult than the bottom-exit strategy, hypothesizing that novices have diffi-
culty representing and expressing a condition about an object that they have not yet operated on.
Pascal does not provide a middle-exit loop control structure, so novices are forced to adapt their
middle-exit plan to a while or repeat loop when they write the code; causing performance to suf-
fer. [Soloway 1989] found that providing a middle-exit control structure would increase accuracy
and would not interfere with program readability.

Construction and expression of the loop invariant is an important component of an iterative plan.
But, in spontaneous verbal plans novices tend to base their models of loops on representing a suc-
cession of actions, rather than on representing the invariant relationships among variables. Even
when asked explicitly, novices have difficulty specifying a loop invariant. Also, novices tend to
use different names at each step of the iteration to label the same functional variable, and they do
not spontaneously elaborate an exit condition [Rogalski 1990].

Beginners tend to use an iterative model for recursion. This model is compatible with tail-recur-
sion, but fails in the more general case [Kurland 1989, Rogalski 1990]. For this reason, [Rogalski
1990] recommends that recursion be taught before iteration.

However, in a more detailed scrutiny of novice models of recursion, [Kahney 1989] found that
while a large number of novices (> 50%) appear to have a iterative model, in fact most of them
actually have no consistent model at all. [Kessler 1989] analyzed transfer between iteration and
recursion, and found positive transfer from iteration to recursion, but no transfer from recursion to
iteration. They conclude by recommending that iteration be taught before recursion.

Context of Use: Notation

Justified by: Empirical studies, observations of individual users

Examples: Many students expect a while loop to terminate as soon as its condition
fails (daemon-exit) rather than waiting until the condition is tested at the
“top of the loop” [Bonar 1989, Sleeman 1988].

33

Students often make the following errors related to loops [Putnam 1989,
Sleeman 1988]:
• interpret a statement that is adjacent to (after) a loop as though it is con-
tained within it;
• execute only the last statement inside a loop multiple times;
• attribute looping behavior to a begin-end block;
• believe that a variable holds more than one value and thus treat a condi-
tional statement as a loop;
• believe that the for-loop control variable does not have a value inside the
loop, or that it is acceptable to change its value inside the loop; and,
• interpreted the range of values on the for-loop control variable as a con-
straint on the values of a different variable inside the loop.

Cross References: 5-3. “Consistency with External Knowledge”
5-4. “Closeness of Mapping”
5-5. “Support for Planning”
5-6. “Naturalness of the Programming Language”
5-8. “Effectiveness of Notation is Task Dependent”
5-9. “Control Structures”

References: [Bonar 1989, Hoc 1989, Kahney 1989, Kessler 1989, Kurland 1989,
Onorato 1986, Pirolli 1985, Putnam 1989, Rogalski 1990, Sleeman 1988,
Soloway 1989, Wu 1991]

34

5-11. Support Direct Manipulation and Definition by Example
Some languages, such as cT [Sherwood 1988], and Turing [Cordy 1992] permit the user to inter-
actively define the objects that will be manipulated by the program, and then to embed them
directly in the program. In textual languages, this saves a lot of effort because writing a program
to define these objects would be tedious [Lewis 1987]. Hypercard and Visual Basic invert the pro-
cess, by having the programmer sketch the graphics and then attach programs to the graphics
[Green 1990a]. However, when these methods are used, there is often a serious problem with the
distinction between use and mention of the object (see examples below) [Smith 1992]. This dis-
tinction should be avoided [Lewis 1987, Smith 1992]. One way to achieve this is by modeling the
system after the physical world, with the following implications: “a) [the system] must have
object-oriented semantics, so that objects can directly present their own state and behavior, b) it
must be dynamic, allowing incremental changes from the interface, c) it must be visual, so that all
capabilities of the language are present in the interface, and d) it must avoid enforcing any kind of
[distinction between use and mention of the object] [Smith 1992].”

Context of Use: Notation, environment and metaphor

Justified by: Expert opinion

Examples: The distinction between use and mention can be seen by considering a but-
ton in a direct-manipulation interface. Pressing the button is a use – it
causes the button to perform its action. However, when moving or resizing
the button, clicking on it should not perform the action – this is mention.
Often handles are provided for mention tasks, but this provides only one
level – you can use the handles but you can not mention them [Smith
1992].

In BASIC, the distinction between use and mention comes up in PRINT

“Q:”; Q , where first the name of the variable is printed, then its value. Stu-
dents misinterpret “Q:” as [Putnam 1989]:
• a comment that is not executed;
• the same as the unquoted use of the variable; or,
• referring to the very first value that was ever stored in the variable.

Cross References: 5-12. “Choosing a Paradigm”

References: [Cordy 1992, Green 1990a, Lewis 1987, Putnam 1989, Sherwood 1988,
Smith 1992]

35

5-12. Choosing a Paradigm
Most of the research in this report studies the classical imperative paradigm of computing where
the user is in control of a single thread of execution. There are many other programming para-
digms, including object-oriented, event-based, functional, programming by demonstration, graph-
ical rewrite rules, autonomous agents, data flow, production system or rule-based programming,
logic programming, parallel programming, etc. Some of these paradigms have achieved wide-
spread use in research and professional software development communities. In other cases, only
experimental systems have been developed to test a paradigm or a mixture of several paradigms.
From a usability point of view, there is much room for investigation of this area, to determine the
strengths and weaknesses of the various paradigms, and how the best features of multiple para-
digms might be mixed into an effective novice programming system. Also, when introducing a
new paradigm to people with some programming experience, there is a risk of negative transfer
from the prior paradigm [Mendelsohn 1990, Siddiqi 1996, Wiedenbeck 1996].

Object oriented programming is widely advocated as a paradigm for quickly building programs
from reusable components. However, this idea, when carried too far, has been found to have a det-
rimental impact on performance. Object oriented programming may have benefits for up to three
levels of class hierarchy, but deeper hierarchies have been found to be difficult to work with [Daly
1996]. A cognitive phenomena called conceptual entropy may be the root cause of this problem
[Dvorak 1994]. Object-oriented design is not necessarily a “natural” design method. Programmers
have difficulty deciding which logical entities should be represented as objects and which as
attributes of the objects [Détienne 1990]. Perhaps careful construction of the programming envi-
ronment could assist users with these problems and limit the use of object-oriented programming
to situations where it will be helpful.

Multiple inheritance may have additional advantages over single-inheritance object-oriented pro-
gramming, but surveys of experienced programmers reveal mixed opinions. Some argue that it
produces a more complex design, is more difficult to test, is more difficult to reuse, and is easy to
abuse; while others argue that it produces a more appropriate design, and facilitates reuse and
maintenance. There is little doubt that it adds complexity. An additional concern is that multiple
inheritance is often implemented where it is inappropriate, resulting in object-oriented software
that is more complex than is necessary. This leads to a recommendation to use multiple inherit-
ance only where there is a strong case for using it [Daly 1995a, Daly 1995b].

Viewing procedures as “object-like entities” offers semantic power and syntactic elegance, but
novice programmers view them with few “object-like” properties [Eisenberg 1987]. The authors
suggest ways to improve instruction and the environment to overcome this. Note that this object-
oriented view of procedures in a functional language is different than pure objects in object-ori-
ented programming languages. [Rist 1996] describes the procedures in a functional language as
encapsulations of goals with their plans; and points out that this encapsulation is orthogonal to the
encapsulation of data with operations in an object-oriented language. Further, he states that goals
and plans are not well captured in an object-oriented language.

Context of Use: Environment

Justified by: Empirical studies, informal observation of users, expert opinion.

36

Examples: KidSim [Cypher 1995, Smith 1995] uses graphical rewrite rules and pro-
gramming by demonstration to provide an end-user programming system
for symbolic simulations of agents in a two-dimensional grid. In KidSim,
user testing revealed that arbitrarily deep hierarchies caused difficulties for
children, so a one-level simple inheritance scheme was adopted [Smith
1994].

AgentSheets is a paradigm that consists of a large number of autonomous
communicating agents organized in a grid [Repenning 1993]. This spatial
metaphor supports the problem solving process, which includes creating
and changing external representations of the problem as well as exploring
problem spaces [Repenning 1994].

ToonTalk uses video-game animation in a city populated by robots as the
means of creating and viewing programs [Kahn 1996]. It uses program-
ming by example, but instead of automatic induction or learning, requires
the user to introduce generality by removing details from the example.

LiveWorld is a programming environment based on rule-like agents that
are responsive to their environment [Travers 1994]. It uses a novel object
system that makes computational objects, such as behavioral rules, con-
crete and accessible like graphical objects.

ShopTalk enhances direct manipulation with natural language text, in order
to overcome some of the limitations of direct manipulation in specifying
objects and actions [Cohen 1989].

Cross References: 5-1. “Choose an Appropriate Metaphor”
5-3. “Consistency with External Knowledge”
5-5. “Support for Planning”
5-7. “Visual vs. Textual”
5-11. “Support Direct Manipulation and Definition by Example”
8-1. “Minimize Working Memory Load”

References: [Cohen 1989, Cypher 1995, Daly 1996, Daly 1995a, Daly 1995b, Détienne
1990, Dvorak 1994, Eisenberg 1987, Kahn 1996, Mendelsohn 1990,
Repenning 1993, Repenning 1994, Rist 1996, Siddiqi 1996, Smith 1995,
Smith 1994, Travers 1994, Wiedenbeck 1996]

37

5-13. Modularity and Abstraction
Abstraction of functionality into modules is a powerful programming concept. It can promote
information hiding, reduce the amount of code that must be understood in detail, and provide a
suite of primitives that can be composed to implement new functionality. When programmers
understand code at an abstract level they are more likely to reuse that code in other appropriate
places, and that reuse is more likely to be by invoking the code (making a procedure call), which
is a more efficient form of reuse than making a copy of the code in the new context [Hoadley
1996]. But novices are not ready to use the abstraction tools which are emphasized by modern
languages [Mendelsohn 1990].

Modular programming is often taught through a discipline known as top-down design, where the
program is first described at an abstract, high level, then refined into a modular hierarchy [Wirth
1983]. However, hierarchically designed programs are not always easy to develop and compre-
hend [Curtis 1989, Perkins 1989]. Top-down strategies are difficult for novices because their
spontaneous strategies or plans are based on concrete mental execution; action-oriented rather
than object-oriented [Rogalski 1990]. And, taking modularity and abstraction to the extreme can
interfere with locality and visibility (see “Locality and Hidden Dependencies” on page 8) [Green
1996]. One problem with comprehension of modular programs is that novices do not yet have the
expert strategy of reading a program in a top-down, order-of-execution manner – instead they read
the program like a book [Gellenbeck 1991b, Jeffries 1982, Wiedenbeck 1986b]. Novices focus on
the very literal and concrete, rather than the abstract, hierarchical, general view used by experts
[Onorato 1986]. An environment that helps the novice to read and understand the program in a
modular fashion and to identify meaningful sections may alleviate this problem. Novices using
such an environment is described make very effective use of modularity [Miller 1994].

A modular program can be modified faster than an equivalent non-modular program when at least
one of the following conditions hold [Korson 1986]:

• modularity has been used to promote information hiding, which localizes changes;
• existing modules provide a suite of useful generic functions that can be composed to
implement new functionality; or,
• the modification requires an extensive understanding and modification of the existing
code.

However, modularity did not help in other cases, such as adding a new feature to a program.

Another kind of abstract thinking that is difficult for novices is writing a general solution to a
problem rather than a solution that is specific to the situation (e.g. a program that sorts a list). This
requires students to make a shift from value processing to variable processing; and to elaborate
some of the control decisions that are not consciously made in solving a specific problem [Hoc
1990]. Also, a lack of abstraction is evident in the tendency of novices to code loops as sequential
actions, unrolled [Hoc 1989]. Examples and analogies play an important role in learning and
understanding, and explanations help learners to generalize the examples [Lewis 1987].

Context of Use: Environment, notation, and instruction

Justified by: Empirical studies, observations of users, expert opinion.

38

Examples: The programming environment can support modularity and reduce its neg-
ative attributes by providing multiple views, such as call graph, outline, and
class hierarchy views [Miller 1994, Roberts 1988].

Spreadsheets do not support modularity and abstraction very well. Abstrac-
tion is presented at a fixed level and hierarchical representations are not
supported [Lewis 1987].

KidSim uses programming by demonstration to address the concrete vs.
general abstraction problem. It allows users to create an abstract rule by
demonstrating what that rule should do in a specific (concrete) situation.
The system then automatically generalizes the specific rule into a more
abstract one [Cypher 1995].

Cross References: 4-3. “Locality and Hidden Dependencies”
5-3. “Consistency with External Knowledge”
5-5. “Support for Planning”
5-6. “Naturalness of the Programming Language”

References: [Curtis 1989, Cypher 1995, Gellenbeck 1991b, Green 1996, Hoadley 1996,
Hoc 1989, Hoc 1990, Jeffries 1982, Korson 1986, Lewis 1987,
Mendelsohn 1990, Miller 1994, Onorato 1986, Perkins 1989, Roberts
1988, Rogalski 1990, Wiedenbeck 1986b, Wirth 1983]

39

5-14. Cognitive Issues
There are several findings about cognitive aspects of programming which should be kept in mind.

Context of Use: Environment, notation and instruction

Justified by: Empirical studies, observations of individual users, expert opinion.

Examples: Meta-cognitive strategies are used to select an operation when several dif-
ferent ones could be applied. They play an important role in effective pro-
gramming. Users may benefit if the system either suggests a particular
strategy or plan, or minimizes the number of situations where an operation
must be selected from among multiple choices [Bell 1991]. However, the
latter suggestion may conflict, for example, with a desire to support multi-
ple looping strategies. As mentioned above (see “Avoid Subtle Distinctions
in Syntax” on page 11), more planning is required when there are many
different legal solutions to a problem [Gray 1987]. When more planning is
required, it is more likely to cause backtracking, where the programmer is
taken away from the progressive activity of coding. The programming envi-
ronment could use an expert system to guide the novice in this decision
making [Návrat 1993, Návrat 1996].

Experts are more likely than novices to develop complex high-level repre-
sentations of the program. This happens a top-down fashion when looking
at large units and fitting large pieces together, and in a bottom-up fashion
when identifying chunks of code and deducing how they fit into the goal
hierarchy [Boehm-Davis 1996]. Anything that the environment can do to
assist novices in forming high-level representations may be helpful.

As mentioned above (see “Closeness of Mapping” on page 20), an abun-
dance of low-level primitives is one of the great cognitive barriers to pro-
gramming [Lewis 1987].

Another great difficulty of programming is that it is much more precision-
intensive than other subjects [Perkins 1988].

Students do not spontaneously develop general problem-solving skills from
programming experiences (transfer effect) [Olson 1987]. There is only
weak evidence that programming is a medium that creates new ways of
dealing with existing knowledge, and no evidence that through program-
ming practice, children develop cognitive skills that are identifiable and
transferable to other situations such as: analogical and temporal reasoning,
mathematical operations, planning of action, error correction, and develop-
ment of logical and spatial operations [Mendelsohn 1990]. Many studies of
children using LOGO confirm this absence of transfer [Dalby 1985, Nick-
erson 1985, Pea 1984, Perkins 1985]. However, when a skill is explicitly
taught in the framework of programming with an emphasis on transfer,

40

transfer to other domains (e.g. debugging skills, expository writing, spatial
cognition skills, planning) can occur [Carver 1988, Carver 1987, Golden-
son 1996, Lee 1993, Lehrer 1988, Mayer 1987]. In addition to acquiring
the programming skill, the student must also recognize the relevance of the
acquired knowledge to the new domain [Fay 1988]. Successful demonstra-
tions of transfer result from effective teacher mediation rather than simply
exposure to programming [Clements 1993, Mayer 1988].

Users who are averse to risk are more successful in structure editor based
programming environments, where syntax errors are not possible [Neal
1987].

Acquiring the syntax of a language is difficult for children. The cognitive
demands of getting the syntax right thus interfere with the task of getting
the semantics right. This phenomenon has been observed in other domains
such as writing. Systems that attempt to relieve the syntactic burden on the
student, such as a flexible language syntax or a structure editor, should per-
mit the student to devote more resources to the semantics of the program-
ming task [Fay 1988].

Although computer programming is often characterized as a set of non-
interacting subtasks (e.g. specification, design, planning, coding, testing,
debugging, documenting, etc.), in practice there are substantial interactions
among them. “This is a fundamental feature of programming [that arises]
from the cognitive characteristics of the subtasks [and] the high uncertainty
in programming environments... [Pennington 1990].”

Knowledge and problem-solving strategies work together in programming.
Fragile knowledge (partial, hard to access, or misused) can be compensated
by effective strategies. Exploratory use of the language and other elemen-
tary problem solving strategies should be explicitly taught [Perkins 1986].
In a course that helped students to form a clear mental model of the com-
puter, provided them with heuristics to helm the conceptualize and orga-
nize the elements of the programming language, and equipped them with
problem solving tools and strategies, students performed better that a con-
trol group that did not use these techniques [Perkins 1988].

Cross References: 4-5. “Avoid Subtle Distinctions in Syntax”
4-6. “Support Incremental Running and Testing with Immediate Feedback”
5-4. “Closeness of Mapping”
5-5. “Support for Planning”
5-9. “Control Structures”
5-10. “Loop and Recursion Control Structures”
5-13. “Modularity and Abstraction”
8-1. “Minimize Working Memory Load”

41

References: [Bell 1991, Boehm-Davis 1996, Carver 1988, Carver 1987, Clements 1993,
Dalby 1985, Fay 1988, Goldenson 1996, Gray 1987, Lee 1993, Lehrer
1988, Lewis 1987, Mayer 1988, Mayer 1987, Mendelsohn 1990, Návrat
1993, Návrat 1996, Neal 1987, Nickerson 1985, Olson 1987, Pea 1984,
Pennington 1990, Perkins 1985, Perkins 1986, Perkins 1988]

42

5-15. Instructional Design
Here are some educational observations that can be used to guide the design of the environment.

Context of Use: Instruction

Justified by: Empirical studies, observations of individual users, expert opinion

References: [Davis 1993] presents a model of learning to program where students
develop a system of rules (some incorrect) about programming, and apply
them either consistently or intermittently. An effective intervention may be
to encourage students to reflect on their rules and relate them to feedback
received from the computer. The environment could be built to support this
reflective phase of knowledge acquisition.

One of the areas of difficulty for novices is orientation to programming:
finding out what programming is for, what problems can be tackled, and
what the advantages are. Another is coming to terms with the duality of the
computer as the manager of program creation vs. the machine executing
the program. The latter problem is exacerbated by early examples that print
text to the screen, where the output of the program looks almost exactly
like the program itself [du Boulay 1989a]. Perhaps better examples could
be chosen.

[du Boulay 1989a] also points out that another crucial concept that is
confusing for novices is the computer’s rigidity, which can be confused by
the way the computer is described (see “Consistency with Metaphor” on
page 17 for more details).

Teachers should [Hoc 1990]:
• design situations that require learners to solve programs in a general way,
rather than specific to a particular situation;
• be aware of the kinds of real-world solutions that students may attempt to
transfer to the programming task, so that they may be reinforced or
suppressed as appropriate; and,
• provide direct, immediate feedback about the way that the learner adapts
the real-world plan to the programming situation.

[Papert 1980] uses computing as a medium, a support for elaborating
environments in which the child constructs his/her own knowledge.
Discovery and exploration are emphasized over a structured curriculum.
[Heller 1986] investigated the difference between a structured Logo
curriculum and a experiential Logo learning environment, and found that
the structured environment is better for obtaining thorough knowledge in a
limited time, while the experiential environment is better for a broadly
framed “growth experience”. [Littlefield 1988] confirmed that a structured
approach was better than an unstructured approach for language mastery,

43

and also found that a mediated-teaching approach produced mastery levels
equivalent to the structured approached. However, the mediated approach
resulted in superior performance on near-transfer tasks than the structure
approach, which in turn was superior to the unstructured approach.

Cross References: 4-6. “Support Incremental Running and Testing with Immediate Feedback”
5-2. “Consistency with Metaphor”
5-3. “Consistency with External Knowledge”
5-5. “Support for Planning”
5-14. “Cognitive Issues”

References: [Davis 1993, du Boulay 1989a, Heller 1986, Hoc 1990, Littlefield 1988,
Papert 1980]

44

6. User Control and Freedom
“Users often choose system functions by mistake and will need a clearly marked “emergency
exit” to leave the unwanted state without having to go through an extended dialog. Support undo
and redo [Nielsen 1994].”

The research in this section extends the above interpretation of “user control and freedom” to
include issues of flexibility in the programming system. Giving control and freedom to users will
make it easier for them to accomplish the programming task in their own ways.

45

6-1. Avoid Requiring Premature Commitment
A modern view of programming, where programs are developed in an exploratory, opportunistic,
incremental fashion, requires that the programming system allow programmers to postpone deci-
sions until they are ready for them. The system should avoid situations where correct generation
of a piece of code requires subsequent pieces to be known. For example, tidy layout in some
graphical programming languages requires the user to anticipate the space requirements of parts
of the program that are not yet written [Green 1990b, Green 1987, Green 1996].

Context of Use: Environment, notation

Justified by: Informal observation of users, expert opinion

Examples: Early in the code generation task, structure editors are good at reducing the
problem of premature commitment, because they allow the programmer to
leave holes where details can be filled in later [Green 1996]. However, later
in the programming task, when modification is more prevalent than genera-
tion of new code, structure editors can make it difficult to back out of an
earlier choice, thus exhibiting premature commitment [Green 1990b].
Structure editors that permit editing the program textually as well as struc-
turally can avoid the latter problem (e.g. electric-C mode in Emacs, or the
MacGnome structure editors [Miller 1994]).

[Green 1996] uses cognitive dimensions to identify the following examples
of premature commitment:
• Text based languages require premature commitment at the structural
level – they encourage development of the program in a linear order by
adding text at the growing tip, rather than leaving holes to be filled in later.
• Visual languages are less demanding about development order, but as
mentioned above they require guess-ahead at the layout level – without
careful lookahead, layout will become messy and is difficult to correct.

Cross References: 4-6. “Support Incremental Running and Testing with Immediate Feedback”
5-5. “Support for Planning”
5-7. “Visual vs. Textual”

References: [Green 1990b, Green 1987, Green 1996, Miller 1994]

46

6-2. Viscosity
Viscosity is a measure of how much effort is required to make a small change to the program
[Green 1996]. The final text of a program rarely corresponds to the order it was generated; there-
fore revision is intrinsic in programming [Davies 1996]. [Fitter 1979] cites a principle of revis-
ability in good notational schemes: a system should make it easy to revise existing code in a
program. Independent of other factors, it is desirable to minimize viscosity. As mentioned above
(see “Avoid Requiring Premature Commitment” on page 45), a modern view of programming,
where programs are developed in an exploratory, opportunistic, incremental fashion, requires that
the programming system allow easy additions or changes to existing code [Green 1990b, Green
1996].

As mentioned above (see “Locality and Hidden Dependencies” on page 8), [Lewis 1987] pro-
poses replacing programming by synthesis with programming by modification, where a library of
examples is provided from which the programmer chooses an appropriate one for a starting point,
identifies needed modifications, then modifies it to suit the current need. This emphasis on modifi-
cation of existing code elevates viscosity as an important factor. However, [Nardi 1993] claims
that programming by modification is not any more natural than other approaches to programming.

Context of Use: Notation

Justified by: Empirical studies, observation of individual users

Examples: Visual programming languages have a high viscosity. [Green 1996] mea-
sured an order of magnitude increase in time to make a small change in the
LabView visual programming language than in a textual language. In order
for the programmer to preserve readability, LabView required many
“enabling” steps before the goal could be addressed.

Adding a line of code to a Basic program may require many lines to be
renumbered, resulting in high viscosity.

Sometimes a small change to a program has a domino effect, requiring
many additional non-local changes. In object-oriented programming there
is less of this cascading of changes, resulting in reduced viscosity [Green
1990b].

Spreadsheets have low viscosity: changes to a part are not constrained by
other parts [Lewis 1987]. However, they are difficult to redesign when
attempting to adapt another user’s spreadsheet to one’s own task.

Cross References: 4-3. “Locality and Hidden Dependencies”
4-6. “Support Incremental Running and Testing with Immediate Feedback”
5-7. “Visual vs. Textual”
5-12. “Choosing a Paradigm”
6-1. “Avoid Requiring Premature Commitment”
6-3. “Support Secondary Notation”

47

References: [Davies 1996, Fitter 1979, Green 1990b, Green 1987, Green 1996, Lewis
1987, Nardi 1993]

48

6-3. Support Secondary Notation
Secondary notation is information that is embedded in the program text that is not part of the syn-
tactic structure that is meaningful to the system [Petre 1992]. There is a huge amount of important
information that is not actually part of the program [Berlin 1993, Green 1995]. Experts use com-
ments, white space, and typography to carry semantic domain knowledge about the program, and
at least some of these benefit novices too [Gilmore 1986, Payne 1984, Riecken 1991]. The most
common kind of secondary notation in textual languages is spatial layout through indentation and
alignment [Gellenbeck 1991a]. However, the effect of spatial layout is less important than a good
choice of notation [Curtis 1988]. Spreadsheet users make use of visual imagery in planning
manipulations, implying that mental images of layout is important [Saariluoma 1994].

Indentation is the principle means of spatial representation in Pascal and other textual languages
[Cunniff 1987]. When used consistently, indentation has been shown to improve comprehension
[Cunniff 1989, Kesler 1984, Miara 1983, Vessey 1984]. Note that when indentation is used cor-
rectly and consistently, it is redundant with curly braces in C [Baecker 1986]. However, indenta-
tion can interfere with locality by breaking up semantic units in favor of syntactic units
[Shneiderman 1986]. Color can supplement indentation in assisting the user to understand control
flow [Van Laar 1989].

Textual languages allow a substantial amount of secondary notation, while visual languages
obscure attempts to use grouping as a secondary notation [Green 1996]. As mentioned above (see
“Use Signalling to Highlight Important Information” on page 6), secondary notation should be
used to improve access to information that is needed but obscured [Green 1990b]. The value of
secondary notation implies that the environment must facilitate it, by allowing the user flexibility
on these details, and perhaps by explicitly supporting the recommendations in [Gellenbeck
1991a]: modules should be preceded by 1-3 lines of preview statements; and module names
should be short, mnemonic, derived from the preview statement, and begin with a verb.

Context of Use: Notation and environment

Justified by: Empirical studies, expert opinion

Examples: Comments, white space, and typography are examples of secondary nota-
tion that should be supported in the programming system.

Meaningful variable names aid comprehension [Gellenbeck 1991b].

In a study using graphical programs, novices were not able to extract the
information in secondary notation that would have assisted their compre-
hension [Green 1991]. Training is required in order for them to exploit sec-
ondary notation.

Python uses indentation for lexical scoping, eliminating the redundant use
of braces or begin-blocks [Watters 1995].

49

Cross References: 4-1. “Use Signalling to Highlight Important Information”
4-3. “Locality and Hidden Dependencies”
5-5. “Support for Planning”
5-7. “Visual vs. Textual”
5-9. “Control Structures”
5-10. “Loop and Recursion Control Structures”
5-15. “Instructional Design”
6-1. “Avoid Requiring Premature Commitment”

May conflict with objectives of 4-4. “Beware of Misleading Appearances”

References: [Baecker 1986, Berlin 1993, Cunniff 1987, Cunniff 1989, Curtis 1988,
Gellenbeck 1991a, Gellenbeck 1991b, Gilmore 1986, Green 1990b, Green
1995, Green 1996, Green 1991, Kesler 1984, Miara 1983, Payne 1984,
Petre 1992, Riecken 1991, Saariluoma 1994, Shneiderman 1986, Van Laar
1989, Vessey 1984, Watters 1995]

50

7. Consistency and Standards
“Users should not have to wonder whether different words, situations, or actions mean the same
thing. Follow platform conventions [Nielsen 1994].”

The research in this section investigates internal consistency of the programming language. Con-
sistency with the outside world is discussed in the section “Match Between System and the Real
World” beginning on page 14. As mentioned there, [Payne 1986] describes a formal method for
assessing both kinds of consistency.

51

7-1. Consistency in Notation
The language should be self-consistent, and its rules should be uniform [du Boulay 1989b]. It
should abide by any suggestions that can be derived from other places in the language, so that
learners can infer one part of the language from another part [Green 1996]. It should minimize
exceptions so that generalization of rules results in correct notation [du Boulay 1989a]. Condi-
tionals with extra cues help both novices and experts [Sime 1977c]. As mentioned above (see
“Avoid Subtle Distinctions in Syntax” on page 11), novices get confused when there are two dif-
ferent syntaxes to accomplish the same effect [Eisenberg 1987].

The meanings of keywords should be context independent. Novices are less likely than experts to
organize language keywords in a meaningful way. Instead, they tend to focus on surface features
[McKeithen 1981]. This argues against gratuitous re-use of the same keyword for different con-
cepts.

Context of Use: Notation

Justified by: Empirical studies, analysis of frequent novice errors, expert opinion

Examples: Syntactic consistency can be enforced by having all control structure take
the form X ... end X [Cordy 1992].

The following are some examples of violations of consistency in notation:

In the Pascal language, all procedures end with semi-colon except the very
last one which ends with a period, all statements end with a semicolon
unless preceding an else or until statement, and lists of parameters are
separated by semicolons in the declaration of a procedure and by commas
in the call to the procedure.

In C, there are three different kinds of braces used in various situations: {} ,
() , and [] . They are not interchangeable, and sometimes they are mixed in
an inconsistent way (see “Avoid Subtle Distinctions in Syntax” on
page 11).

Pascal is not syntactically consistent in its control structures. Most of them
terminate with end , but the repeat statement does not.

Many novice bugs arise out of inconsistency in the way the language treats
different data types [Spohrer 1986b]. For example, white space is treated
differently when reading into a numeric variable than it is when reading
into a character variable [Spohrer 1986a].

The keyword static in C++ has many different meanings depending on
context.

52

Exceptions: Even when a language embraces consistency, students may not appreciate
it. For example, in LISP the rules for evaluation are consistent, yet students
adopt a series of special-case rules for certain control structures such as
cond .

Cross References: 4-4. “Beware of Misleading Appearances”
4-5. “Avoid Subtle Distinctions in Syntax”
5-2. “Consistency with Metaphor”
5-3. “Consistency with External Knowledge”

References: [Cordy 1992, du Boulay 1989a, du Boulay 1989b, Eisenberg 1987, Green
1996, McKeithen 1981, Sime 1977c, Spohrer 1986a, Spohrer 1986b]

53

8. Recognition Rather Than Recall
“Make objects, actions, and options visible. The user should not have to remember information
from one part of the dialogue to another. Instructions for use of the system should be visible or
easily retrievable whenever appropriate [Nielsen 1994].”

This section addresses the memory demands of programming.

54

8-1. Minimize Working Memory Load
Working memory limitations account for a large part of the inferior performance of novice pro-
grammers [Anderson 1985]. While experts are good at utilizing external memory to relieve their
memory load, novices rely extensively on working memory. This indicates that for novices it is
important that the environment minimize memory load, since they do not have the fallback of
externalization [Davies 1993, Davies 1996]. TEd addresses this problem by maintaining a visual
record of all edits [Ormerod 1996]. It is claimed that this supports display-based problem solving
because it acts as an external repository of important programming knowledge, and it cues the
programmer to focus on unsatisfied goals.

Context of Use: General

Justified by: Empirical studies

Examples: Neither visual programming languages nor textual languages are good at
supporting “display-based” problem solving, where the system’s display is
used as a memory aid, reducing demands on working memory [Green
1996].

Cross References: 5-7. “Visual vs. Textual”
6-1. “Avoid Requiring Premature Commitment”

References: [Anderson 1985, Davies 1993, Davies 1996, Green 1996, Ormerod 1996]

55

9. Aesthetic and Minimalist Design
“Dialogues should not contain information which is irrelevant or rarely needed. Every extra unit
of information in a dialogue competes with the relevant units of information and diminishes their
relative visibility [Nielsen 1994].”

The research in this section investigates conciseness.

56

9-1. Principle of Conciseness
[Cordy 1992] describes a principle of conciseness, which argues against redundant symbols such
as program preambles, punctuation, and explicit declaration of variables and their types. Elimina-
tion of punctuation addresses a problem with the misplaced use of syntax which is described
above (see “Avoid Subtle Distinctions in Syntax” on page 11). But if, for example, punctuation is
replaced with line breaks as a statement separator, the problem of wrapping long lines must be
handled sensibly.

Another aspect of conciseness is to allow optional information, with intelligent defaults [Cordy
1992]. Programming system should be flexible in allowing the user to elide undesired details and
just fill in the obvious details, to stop requiring exact truth and instead allow an executable “cogni-
tive approximation” to the solution [Lewis 1987].

However, conciseness can be subverted by a desire for elegance or parsimony of primitives. This
can lead to absurdities. For example, early versions of Prolog did subtraction by inverse addition
[Green 1990a]. [Mendelsohn 1990] cautions not to take economy and elegance as virtues in their
own right: these are misplaced in designing languages for novices. “In looking for ever more
abstracted ways to express behavior, modern languages have excised most clues to goal and pur-
pose that are essential to novice understanding [Bonar 1990].” Novice programmers are more ver-
bose than expert programmers in describing tasks to computers or to humans [Onorato 1986].
Thus experts have the edge in conciseness and preciseness.

Context of Use: Notation

Justified by: Empirical studies, expert opinion

Examples: The type of a variable could be inferred from its initialization, eliminating
the necessity to declare its type.

Pascal has a large program preamble that only contributes one meaningful
piece of information, the name of the program, “p”:
Program p (input,output);

APL takes conciseness to the extreme, at the expense of an excessive num-
ber of cryptic primitives. But, as mentioned above (see “Closeness of Map-
ping” on page 20), an abundance of primitives is problematic [Lewis
1987].

HyperTalk is a compromise, because optional syntax allows the same
expression to be expressed concisely or verbosely, depending on the pro-
grammer’s preference. However, as mentioned above (see “Avoid Subtle
Distinctions in Syntax” on page 11), more planning is required when there
are many different legal solutions to a problem [Gray 1987].

Exceptions: Conciseness should be balanced with the findings of [Sime 1977c] that
more verbose control structures help both beginners and novices to manage
flow of control.

57

Cross References: “Use Signalling to Highlight Important Information” on page 6
4-5. “Avoid Subtle Distinctions in Syntax”
5-3. “Consistency with External Knowledge”
5-4. “Closeness of Mapping”

References: [Bonar 1990, Cordy 1992, Gray 1987, Green 1990a, Lewis 1987,
Mendelsohn 1990, Onorato 1986, Sime 1977c]

58

10. Help Users Recognize, Diagnose, and Recover from Errors
“Error messages should be expressed in plain language (no codes), precisely indicate the problem,
and constructively suggest a solution [Nielsen 1994].”

The research in this section investigates some common kinds of bugs and ways that the system
can help the user identify and fix them.

59

10-1. Support for Testing and Debugging
Testing and debugging are areas of difficulty for novices [du Boulay 1989a]. As mentioned above
(see “Support Incremental Running and Testing with Immediate Feedback” on page 12), [du Bou-
lay 1989b] claims that the computational machine should reveal its internal workings in terms of
the language itself. This can be interpreted as a call for a source-level debugger and tracer with
data visualization. [Mendelsohn 1990], and [Eisenstadt 1989] describe such systems for Prolog,
and [Miller 1994] describes one for Pascal.

Research by [Gugerty 1986a, Gugerty 1986b, Kessler 1986, Nanja 1987] observed that novices
tend to add new bugs to the program while debugging. This suggests that the environment should
provide a checkpointing feature, or a selective undo feature, to help the user recover from these
errors.

A survey of experienced programmers found that the most common root cause of bugs was mem-
ory getting clobbered or used up [Eisenstadt 1993]. Anything the environment can do to prevent
or detect these problems would be helpful, especially since this kind of bug is more difficult to
detect because often there is chasm – a distance in time and code proximity – between the cause
and the effect of the bug. That survey also found that using a debugger and instrumenting the code
with print statements were much more common than code-reading in expert debugging, suggest-
ing that a good debugger is essential.

However, novices who are able to program do not automatically gain debugging skills in the pro-
cess of learning to program, suggesting that it would be useful for debugging strategies to be
taught or for the environment to be proactive in suggesting strategies.

Context of Use: Environment

Justified by: Empirical studies, observations of individual users, expert opinion

Examples: Spreadsheets do not support debugging very well. The underlying formulas
are not revealed unless explicitly made visible, so only one cell can be
examined at a time; and variables are usually labelled with their cell loca-
tion rather than a meaningful or mnemonic name.

Many novice bugs are caused by boundary or fence-post problems, such as:
• off-by-one bugs;
• not permitting the value zero where it should be permitted, or permitting
it where it should not be permitted;
• the decision whether a boundary value should be handled as a special case
or by one of the conditions that it divides;
• confusion between the number of values in a range and the highest value
in a range:
• drawing incorrect parallels between constructs that have different bound-
ary values, such as hours ranging from 1..12, but minutes ranging from
0..59 rather than 1..60.
To the extent that the environment can help to clarify these confusions,

60

novice productivity should be enhanced [Spohrer 1986a, Spohrer 1986b].

A major source of bugs is failure to guard against illegal or missing data
[Cunniff 1989].

Students sometimes interpret the assignment statement A:=B as a swap
operation, a print statement, a no-op, or a boolean comparison operation
[Sleeman 1988].

Cross References: 4-3. “Locality and Hidden Dependencies”
4-6. “Support Incremental Running and Testing with Immediate Feedback”
5-15. “Instructional Design”

References: [Cunniff 1989, du Boulay 1989a, du Boulay 1989b, Eisenstadt 1993,
Eisenstadt 1989, Gugerty 1986a, Gugerty 1986b, Kessler 1986,
Mendelsohn 1990, Miller 1994, Nanja 1987, Sleeman 1988, Spohrer
1986a, Spohrer 1986b]

61

11. Help and Documentation
“Even though it is better if the system can be used without documentation, it may be necessary to
provide help and documentation. Any such information should be easy to search, focused on the
user’s task, list concrete steps to be carried out, and not be too large [Nielsen 1994].”

The research in this section investigates a kind of documentation called guiding knowledge.

62

11-1. Provide Guiding Knowledge
Guiding knowledge is a brief document that describes everything a naive user needs to know
about the system [Bell 1994]. It describes the metaphor, explains general concepts of the system
and its use, and contains advice about how to go about solving problems. Examples and analogies
play an important role in understanding [Lewis 1987]. Users will have difficulty if there are hid-
den assumptions, if there is any necessary information missing from the guiding knowledge, if the
guiding knowledge is not consistent with itself or the system’s metaphorical model, or if the guid-
ing knowledge does not convince the user that the recommended plans will work. However, it is
desirable for the guiding knowledge to be brief, because it is the initial hurdle to using the system.
This argues for a good metaphor, because it will be easily explained and consistent, so that the
guiding knowledge can be brief.

Context of Use: Documentation and metaphor

Justified by: Based on the programming walkthrough method for assessing the program-
ming language designs [Bell 1994], which in turn was based on the cogni-
tive walkthrough method for evaluating user interfaces [Lewis 1990,
Polson 1992].

Examples: The Macintosh introduced the mouse, menus, icons, and windows in a
direct-manipulation graphical user interface. Despite the fact that most new
users were learning a radically new system, the guiding knowledge was
remarkably small: a thin manual and a short online guided tour.

When the guiding knowledge suggests a plan for solving a particular prob-
lem, but does not convince the user that this plan will work, users appar-
ently believe that they do not understand the guiding knowledge, and begin
searching for alternative plans that are “better”. This may be related to
meta-cognitive strategies (see “Cognitive Issues” on page 39).

Examples: 5-1. “Choose an Appropriate Metaphor”
5-5. “Support for Planning”
5-14. “Cognitive Issues”

References: [Bell 1994, Lewis 1987, Lewis 1990, Polson 1992]

63

12. Conclusions
This report attempts to organize the existing research about novice programmers in a way that will
facilitate its use in guiding the design of new programming systems. The authors welcome com-
ments and additions to this material.

There are a number of questions that are not addressed by the research we were able to find. For
example:

• How does verbosity affect novice programming effectiveness? Are languages like Hyper-
Talk, with optional extra words that enhance natural-language readability, more effective
than terse languages, and what new problems do they exhibit?
• What are the relative strengths and weaknesses of the various paradigms of program-
ming, such as the event-driven model?
• To what extent can careful design of the programming environment solve many of the
problems that have been identified in this report?

We hope that future research will address these questions.

In addition to the results summarized here, there are general Human-Computer Interaction (HCI)
principles that apply to all computer systems, including programming systems (e.g., [Macaulay
1995, Nielsen 1994, Tognazzini 1992]). Designers of programming systems should consider these
general HCI principles as well as the issues that are directly related to programming.

13. Acknowledgments
The authors acknowledge Diana Bental, Alan Blackwell, Albert Corbett, Igor Curcio, David
Gilmore, Rachelle Heller, Mark Ireland, Bonnie John, Pavol Návrat, Tom Ormerod, and Robert
Rist for their comments and suggestions.

64

14. Bibliography

[Anderson 1985] Anderson, J.R. and R. Jeffries (1985). “Novice LISP Errors: Undetected
Losses of Information from Working Memory.” Human-Computer Interac-
tion 1: 107-131.

[Arblaster 1979] Arblaster, A.T., M.E. Sime and T.R.G. Green (1979). “Jumping to Some
Purpose.” The Computer Journal 22: 105-109.

[Atwood 1978] Atwood, M.E. and H.R. Ramsay (1978). Cognitive Structures in the Com-
prehension and Memory of Computer Programs: An Investigation of Com-
puter Debugging. Alexandria, VA, U.S. Army Research Institute.

[Baecker 1986] Baecker, R. (1986). Design Principles for the Enhanced Presentation of
Computer Program Source Text. Proceedings of CHI'86 Conference on
Human Factors in Computing Systems. M. Mantei and P. Orbeton. Boston,
ACM: 51-58.

[Baecker 1990] Baecker, R.M. and A. Marcus (1990). Human Factors and Typography for
More Readable Programs. Reading, MA, Addison-Wesley Publishing Co.
(ACM Press).

[Ball 1995] Ball, L.J. and T.C. Ormerod (1995). “Structured and Opportunistic Pro-
cessing in Design: A Critical Discussion.” International Journal of Human-
Computer Studies 43: 131-151.

[Bell 1994] Bell, B., W. Citrin, C. Lewis, J. Rieman, R. Weaver, N. Wilde and B. Zorn
(1994). “Using the Programming Walkthrough to Aid in Programming
Language Design.” Software–Practice and Experience 24(1): 1-25.

[Bell 1991] Bell, B., J. Rieman and C. Lewis (1991). Usability Testing of a Graphical
Programming System: Things We Missed in a Programming Walkthrough.
Proceedings of ACM CHI'91 Conference on Human Factors in Computing
Systems. S. P. Robertson, G. M. Olson and J. S. Olson. New Orleans, ACM
Press: 7-12.

[Berlin 1993] Berlin, L.M. (1993). Beyond Program Understanding: A Look at Program-
ming Expertise in Industry. Empirical Studies of Programmers: Fifth
Workshop. C. R. Cook, J. C. Scholtz and J. C. Spohrer. Palo Alto, CA,
Ablex Publishing Corporation: 6-25.

[Biermann 1983] Biermann, A.W., B.W. Ballard and A.H. Sigmon (1983). “An Experimental
Study of Natural Language Programming.” International Journal of Man-
Machine Studies 18: 71-87.

65

[Blackwell 1996] Blackwell, A.F. (1996). Metacognitive Theories of Visual Programming:
What Do We Think We Are Doing? Proceedings of the VL'96 IEEE Work-
shop on Visual Languages. Boulder, CO: in press.

[Boehm-Davis 1996] Boehm-Davis, D.A., J.E. Fox and B.H. Philips (1996). Techniques for
Exploring Program Comprehension. Empirical Studies of Programmers:
Sixth Workshop. W. D. Gray and D. A. Boehm-Davis. Norwood, NJ, Ablex
Publishing Corporation: 3-37.

[Bonar 1986] Bonar, J. (1986). Mental Models of Programming Loops. Pittsburgh,
Learning Research and Development Center, University of Pittsburgh.

[Bonar 1987] Bonar, J., R. Cunningham, P. Beatty and P. Riggs (1987). Bridge: Intelli-
gent Tutoring with Intermediate Representations. Pittsburgh, University of
Pittsburgh.

[Bonar 1990] Bonar, J. and B.W. Liffick (1990). A Visual Programming Language for
Novices. Principles of Visual Systems. S.-K. Chang. Englewood, CA, Pren-
tice-Hall.

[Bonar 1989] Bonar, J. and E. Soloway (1989). Preprogramming Knowledge: A Major
Source of Misconceptions in Novice Programmers. Studying the Novice
Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence
Erlbaum Associates: 325-353.

[Bonar 1988a] Bonar, J.G. and R. Cunningham (1988a). Bridge: An Intelligent Tutor for
Thinking About Programming. Artificial Intelligence and Human Learning:
Intelligent Computer-Aided Instruction. J. Self. London, Chapman and
Hall: 432.

[Bonar 1988b] Bonar, J.G. and R. Cunningham (1988b). Bridge: Tutoring the Program-
ming Process. Intelligent Tutoring Systems: Lessons Learned. J. Psotka, L.
D. Massey and S. A. Mutter. Hillsdale, NJ, Lawrence Erlbaum Associates:
409-434.

[Borning 1985] Borning, A. (1985). “A Prototype Electronic Encyclopedia.” EACM Trans-
actions on Office Information Systems 3: 63-88.

[Bowles 1994] Bowles, A., D. Robertson, W. Vasconcelos, M. Vargas-Vera and D. Bental
(1994). “Applying Prolog Programming Techniques.” International Journal
of Human-Computer Studies 41: 329-350.

[Brna 1991] Brna, P., A. Bundy, T. Dodd, M. Eisenstadt, C.K. Looi, H. Pain, D. Robert-
son, B. Smith and M. van Someren (1991). “Prolog Programming Tech-
niques.” Instructional Science 20: 111-133.

66

[Brooke 1980a] Brooke, J.B. and K.D. Duncan (1980a). “Experimental Studies of Flow-
chart Use at Different Stages of Program debugging.” Ergonomics 23:
1057-1091.

[Brooke 1980b] Brooke, J.B. and K.D. Duncan (1980b). “An Experimental Study of Flow-
charts as an Aid to Identification of Procedural Faults.” Ergonomics 23:
387-399.

[Brooks 1983] Brooks, R. (1983). “Towards a Theory of the Comprehension of Computer
Programs.” International Journal of Man-Machine Studies 18: 543-554.

[Brusilovsky 1994a] Brusilovsky, P., E. Calabrese, J. Hvorecky, A. Kouchnirenko and P. Miller
(1994a). Mini-languages: A Way to Learn Programming Principles.

[Brusilovsky 1994b] Brusilovsky, P., A. Kouchnirenko, P. Miller and I. Tomek (1994b). Teach-
ing Programming to Novices: A Review of Approaches and Tools. Educa-
tional Multimedia and Hypermedia: Proceedings of ED-MEDIA 94. T.
Ottmann and I. Tomek. Vancouver, BC Canada, Association for the
Advancement of Computing in Education: 103-110.

[Carver 1988] Carver, S.M. (1988). Learning and Transfer of Debugging Skills: Applying
Task Analysis to Curriculum Design and Assessment. Teaching and Learn-
ing Computer Programming: Multiple Research Perspectives. R. E. Mayer.
Hillsdale, NJ, Lawrence Erlbaum Associates: 259-297.

[Carver 1987] Carver, S.M. and S.C. Risinger (1987). Improving Children's Debugging
Skills. Empirical Studies of Programmers: Second Workshop. G. M. Olson,
S. Shepard and E. Soloway. Norwood, NJ, Ablex: 147-171.

[Clements 1993] Clements, D.H. and J.S. Meredith (1993). “Research on Logo: Effects and
Efficacy.” Journal of Computing in Childhood Education 4(4): 263-290.

[Clements 1995] Clements, D.H. and J. Sarama (1995). “Design of a Logo Environment for
Elementary Geometry.” Journal of Mathematical Behavior 14: 381-398.

[Cohen 1989] Cohen, P.R., M. Dalrymple, D.B. Moran, F.C.N. Pereira, J.W. Sullivan, J.
Robert A. Gargan, J.L. Schlossberg and S.W. Tyler (1989). Synergistic Use
of Direct Manipulation and Natural Language. Proceedings of ACM
CHI'89 Conference on Human Factors in Computing Systems: 227-233.

[Corbett 1995] Corbett, A.T. and J.R. Anderson (1995). Knowledge Decomposition and
Subgoal Reification in the ACT Programming Tutor. Artificial Intelligence
in Education, 1995: Proceedings of the 7th World Conference on Artifi cial
Intelligence in Education. J. Greer. Charlottesville, VA, AACE: 469-476.

67

[Cordy 1992] Cordy, J.R. (1992). Hints on the Design of User Interface Language Fea-
tures – Lessons from the Design of Turing. Languages for Developing User
Interfaces. B. A. Myers. Boston, Jones and Bartlett Publishers: 329-340.

[Crosby 1990] Crosby, M.E. and J. Stelovsky (1990). “How Do We Read Algorithms? A
Case Study.” Computer 23(1): 24-35.

[Cunniff 1987] Cunniff, N. and R.P. Taylor (1987). Graphical Versus Textual Representa-
tion: An Empirical Study of Novices' Program Comprehension. Empirical
Studies of Programmers: Second Workshop. G. M. Olson, S. Sheppard and
E. Soloway. Norwood, NJ, Ablex. 114-131.

[Cunniff 1989] Cunniff, N., R.P. Taylor and J.B. Black (1989). Does Programming Lan-
guage Affect the Type of Conceptual Bugs in Beginners' Programs? A
Comparison of FPL and Pascal. Studying the Novice Programmer. E. Solo-
way and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 419-
429.

[Curtis 1989] Curtis, B. (1989). Five Paradigms in the Psychology of Programming.
Handbook of Human-Computer Interaction. M. Helander. North-Holland,
Elsevier.

[Curtis 1988] Curtis, B., S. Sheppard, E. Kruesi-Bailey, J. Bailey and D. Boehm-Davis
(1988). “Experimental Evaluation of Software Documentation Formats.”
Journal of Systems and Software 9: 1-41.

[Cypher 1995] Cypher, A. and D.C. Smith (1995). KidSim: End User Programming of
Simulations. Proceedings of CHI'95 Conference on Human Factors in
Computing Systems. Denver, ACM.

[Dalby 1985] Dalby, J. and M.C. Linn (1985). “The Demands and Requirements of Com-
puter Programming: A Literature Review.” Journal of Educational Comput-
ing Research 1: 253-274.

[Daly 1996] Daly, J., A. Brooks, J. Miller, M. Roper and M. Wood (1996). Evaluating
the Effect of Inheritance on the Maintainability of Object-Oriented Soft-
ware. Empirical Studies of Programmers: Sixth Workshop. W. D. Gray and
D. A. Boehm-Davis. Norwood, NJ, Ablex Publishing Corporation: 39-57.

[Daly 1995a] Daly, J., J. Miller, A. Brooks, M. Roper and M. Wood (1995a). Issues on
the Object-Oriented Paradigm: A Questionnaire Survey. Glasgow, Univer-
sity of Strathclyde Department of Computer Science: 44.

[Daly 1995b] Daly, J., M. Wood, A. Brooks, J. Miller and M. Roper (1995b). Structured
Interviews on the Object-Oriented Paradigm. Glasgow, University of
Strathclyde Department of Computer Science: 34.

68

[Davies 1993] Davies, S.P. (1993). Externalising Information During Coding Activities:
Effects of Expertise, Environment and Task. Empirical Studies of Program-
mers: Fifth Workshop. C. R. Cook, J. C. Scholtz and J. C. Spohrer. Palo
Alto, CA, Ablex Publishing Corporation: 42-61.

[Davies 1996] Davies, S.P. (1996). Display-Based Problelm Solving Stragegies in Com-
puter Programming. Empirical Studies of Programmers: Sixth Workshop.
W. D. Gray and D. A. Boehm-Davis. Norwood, NJ, Ablex Publishing Cor-
poration: 59-76.

[Davis 1993] Davis, E.A., M.C. Linn, L.M. Mann and M.J. Clancy (1993). Mind Your Ps
and Qs: Using Parentheses and Quotes in LISP. Empirical Studies of Pro-
grammers: Fifth Workshop. C. R. Cook, J. C. Scholtz and J. C. Spohrer.
Palo Alto, CA, Ablex Publishing Corporation: 62-85.

[Détienne 1990] Détienne, F. (1990). Difficulties in Designing with an Object-Oriented Pro-
gramming Language: An Empirical Study. Proceedings of INTERACT '90
Conference on Computer-Human Factors. Cambridge, England: 971-976.

[diSessa 1989] diSessa, A.A. and H. Abelson (1989). Boxer: A Reconstructible Computa-
tional Medium. Studying the Novice Programmer. E. Soloway and J. C.
Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 467-481.

[du Boulay 1989a] du Boulay, B. (1989a). Some Difficulties of Learning to Program. Studying
the Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ,
Lawrence Erlbaum Associates: 283-299.

[du Boulay 1989b] du Boulay, B., T. O'Shea and J. Monk (1989b). The Glass Box Inside the
Black Box: Presenting Computing Concepts to Novices. Studying the Nov-
ice Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence
Erlbaum Associates: 431-446.

[Dvorak 1994] Dvorak, J. (1994). “Conceptual Entropy and its Effect on Class Hierar-
chies.” IEEE Computer 27(6): 59-63.

[Eisenberg 1987] Eisenberg, M., M. Resnick and F. Turbak (1987). Understanding Proce-
dures as Objects. Empirical Studies of Programmers: Second Workshop. G.
M. Olson, S. Shepard and E. Soloway. Norwood, NJ, Ablex: 14-32.

[Eisenstadt 1993] Eisenstadt, M. (1993). Tales of Debugging from the Front Lines. Empirical
Studies of Programmers: Fifth Workshop. C. R. Cook, J. C. Scholtz and J.
C. Spohrer. Palo Alto, CA, Ablex Publishing Corporation: 86-112.

69

[Eisenstadt 1989] Eisenstadt, M. and M. Brayshaw (1989). An Integrated Textbook, Video,
and Software Environment for Novice and Expert Prolog Programmers.
Studying the Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale,
NJ, Lawrence Erlbaum Associates: 447-466.

[Fay 1988] Fay, A.L. and R.E. Mayer (1988). Learning LOGO: A Cognitive Analysis.
Teaching and Learning Computer Programming: Multiple Research Per-
spectives. R. E. Mayer. Hillsdale, NJ, Lawrence Erlbaum Asociates: 55-74.

[Fenton 1989] Fenton, J. and K. Beck (1989). An Object-Oriented Simulation System
with Agent Rules for Children of All Ages. Proceedings of OOPSLA'89.
New York, ACM: 123-137.

[Finzer 1993] Finzer, W.F. and L. Gould (1993). Rehearsal World: Programming by
Rehearsal. Watch What I Do: Programming by Demonstration. A. Cypher,
MIT Press.

[Fitter 1979] Fitter, M.J. and T.R.G. Green (1979). “When Do Diagrams Make Good
Computer Languages?” International Journal of Man-Machine Studies 11:
235-261.

[Fung 1990] Fung, P., M. Brayshaw, B. du Boulay and M. Elsom-Cook (1990).
“Towards a Taxonomy of Novices' Misconceptions of the Prolog Inter-
preter.” Instructional Science 19: 311-336.

[Fung 1987] Fung, P., B. du Boulay and M. Elsom-Cook (1987). An Initial Taxonomy of
Novices' Misconceptions of the Prolog Interpreter, Institute for Educational
Technology, The Open University.

[Galotti 1985] Galotti, K.M. and W.F. Ganong, III (1985). “What Non-Programmers
Know About Programming: Natural Language Procedure Specification.”
International Journal of Man-Machine Studies 22: 1-10.

[Gellenbeck 1991a] Gellenbeck, E.M. and C.R. Cook (1991a). Does Signalling Help Profes-
sional Programmers Read and Understand Computer Programs? Empirical
Studies of Programming: Fourth Workshop. J. Koenemann-Belliveau, T. G.
Moher and S. P. Robertson. New Brunswick, NJ, Ablex Publishing Corpo-
ration: 82-98.

[Gellenbeck 1991b] Gellenbeck, E.M. and C.R. Cook (1991b). An Investigation of Procedure
and Variable Names as Beacons During Program Comprehension. Empiri-
cal Studies of Programming: Fourth Workshop. J. Koenemann-Belliveau,
T. G. Moher and S. P. Robertson. New Brunswick, NJ, Ablex Publishing
Corporation: 65-81.

70

[Gilmore 1986] Gilmore, D.J. (1986). Structural Visibility and Program Comprehension.
People and Computers: Designing for Usability. M. D. Harrison and A. F.
Monk. Cambridge, Cambridge University Press.

[Gilmore 1988] Gilmore, D.J. and T.R.G. Green (1988). “Programming Plans and Pro-
gramming Expertise.” Quarterly Journal of Experimental Psychology 40a:
423-442.

[Gilmore 1984] Gilmore, D.J. and H.T. Smith (1984). “An Investigation of the Utility of
Flowhcarts During Computer Program Debugging.” International Journal
of Man-Machine Studies 20: 331-372.

[Goldenson 1996] Goldenson, D.R. (1996). Why Teach Computer Programming? Some Evi-
dence about Generalization and Transfer. Proceedings of NECC'96
National Educcational Computing Conference.

[Goldenson 1991] Goldenson, D.R. and B.J. Wang (1991). Use of Structure Editing Tools by
Novice Programmers. Empirical Studies of Programming: Fourth Work-
shop. J. Koenemann-Belliveau, T. G. Moher and S. P. Robertson. New
Brunswick, NJ, Ablex Publishing Corporation: 99-120.

[Good 1996] Good, J. (1996). The 'Right' Tool for the Task: An Investigation of External
Representations, Program Abstractions and Task Requirements. Empirical
Studies of Programmers: Sixth Workshop. W. D. Gray and D. A. Boehm-
Davis. Norwood, NJ, Ablex Publishing Corporation: 77-98.

[Gray 1987] Gray, W. and J.R. Anderson (1987). Change-Episodes in Coding: When
and How Do Programmers Change Their Code. Empirical Studies of Pro-
grammers: Second Workshop. G. M. Olson, S. Sheppard and E. Soloway.
Norwood, NJ, Ablex: 185-197.

[Green 1990a] Green, T.R.G. (1990a). The Nature of Programming. Psychology of Pro-
gramming. J.-M. Hoc, T. R. G. Green, R. Samurçay and D. J. Gilmore.
London, Academic Press: 21-44.

[Green 1990b] Green, T.R.G. (1990b). Programming Languages as Information Struc-
tures. Psychology of Programming. J.-M. Hoc, T. R. G. Green, R. Sam-
urçay and D. J. Gilmore. London, Academic Press: 118-137.

[Green 1987] Green, T.R.G., R. Bellamy, K.E. and J.M. Parker (1987). Parsing and Gnis-
rap: A Model of Device Use. Empirical Studies of Programmers: Second
Workshop. G. M. Olson, S. Sheppard and E. Soloway. Norwood, NJ,
Ablex.

71

[Green 1995] Green, T.R.G. and R. Navarro (1995). Programming Plans, Imagery, and
Visual Programming. Proceedings of INTERACT-95. K. Nordby, D. J.
Gilmore and S. Arnesen. London, Chapman and Hall.

[Green 1992] Green, T.R.G. and M. Petre (1992). When Visual Programs are Harder to
Read than Textual Programs. Human-Computer Interaction: Tasks and
Organisation, Proceedings of ECCE-6 (6th European Conference on Cog-
nitive Ergonomics). G. C. van der Veer, M. J. Tauber, S. Bagnarola and M.
Antavolits. Rome, CUD.

[Green 1996] Green, T.R.G. and M. Petre (1996). “Usability Analysis of Visual Program-
ming Environments: A 'Cognitive Dimensions' Framework.” Journal of
Visual Languages and Computing 7(2): 131-174.

[Green 1991] Green, T.R.G., M. Petre and R.K.E. Bellamy (1991). Comprehensibility of
Visual and Textual Programs: A Test of Superlativism Against the 'Match-
Mismatch' Conjecture. Empirical Studies of Programming: Fourth Work-
shop. J. Koenemann-Belliveau, T. G. Moher and S. P. Robertson. New
Brunswick, NJ, Ablex Publishing Corporation: 121-146.

[Grice 1975] Grice, H.P. (1975). Logic and Conversation. Syntax and Semantics III:
Speech Acts. P. Cole and J. Morgan. New York, Academic Press.

[Gugerty 1986a] Gugerty, L. and G.M. Olson (1986a). Comprehension Differences in
Debugging by Skilled and Novice Programmers. Empirical Studies of Pro-
grammers. E. Soloway and S. Iyengar. Washington, DC, Ablex Publishing
Corporation: 13-27.

[Gugerty 1986b] Gugerty, L. and G.M. Olson (1986b). Debugging by Skilled and Novice
Programmers. Proceedings of ACM CHI'86 Conference on Human Factors
in Computing Systems: 171-174.

[Guzdial 1992] Guzdial, M., P. Weingrad, R. Boyle and E. Soloway (1992). Design Sup-
port Environments for End Users. Languages for Developing User Inter-
faces. B. A. Myers. Boston, Jones and Bartlett Publishers: 57-78.

[Halasz 1982] Halasz, F. and T.P. Moran (1982). Analogy Considered Harmful. Proceed-
ings of Human Factors in Computer Systems: 383-386.

[Hasan 1996] Hasan, H., C. Jones and E. Gould (1996). Prototyping Tools for Expert and
Novice Application Development. Empirical Studies of Programmers:
Sixth Workshop. W. D. Gray and D. A. Boehm-Davis. Norwood, NJ, Ablex
Publishing Corporation: 99-107.

72

[Heller 1986] Heller, R.S. (1986). Different Logo Teaching Styles: Do They Really Mat-
ter. Empirical Studies of Programmers. E. Soloway and S. Iyengar. Wash-
ington, DC, Ablex Publishing Corporation: 117-127.

[Hoadley 1996] Hoadley, C.M., M.C. Linn, L.M. Mann and M.J. Clancy (1996). When,
Why and How Do Novice Programmers Reuse Code? Empirical Studies of
Programmers: Sixth Workshop. W. D. Gray and D. A. Boehm-Davis. Nor-
wood, NJ, Ablex Publishing Corporation: 109-129.

[Hoc 1983] Hoc, J.-M. (1983). Analysis of Beginner's Problem-solving Strategies in
Programming. The Psychology of Computer Use. T. R. G. Green, S. J.
Payne and G. van der Veer. London, Academic Press: 143-158.

[Hoc 1989] Hoc, J.-M. (1989). Do We Really Have Conditional Statements in Our
Brains? Studying the Novice Programmer. E. Soloway and J. C. Spohrer.
Hillsdale, NJ, Lawrence Erlbaum Associates: 179-90.

[Hoc 1990] Hoc, J.-M. and A. Nguyen-Xuan (1990). Language Semantics, Mental
Models and Analogy. Psychology of Programming. J.-M. Hoc, T. R. G.
Green, R. Samurçay and D. J. Gilmore. London, Academic Press: 139-156.

[Jeffries 1982] Jeffries, R.A. (1982). Comparison of Debugging Behavior of Novice and
Expert Programmers. Pittsburgh, PA, Department of Psychology, Carnegie
Mellon University.

[Kahn 1996] Kahn, K. (1996). “Drawings on Napikins, Video-Game Animation, and
Other Ways to Program Computers.” Communications of the ACM 39(8):
49-59.

[Kahney 1989] Kahney, H. (1989). What Do Novice Programmers Know About Recursion.
Studying the Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale,
NJ, Lawrence Erlbaum Associates: 209-228.

[Kesler 1984] Kesler, T.E., R.B. Uram, F. Magareh-Abed, A. Fritzsche, C. Amport and
H.E. Dunsmore (1984). “The Effect of Indentation on Program Compre-
hension.” International Journal of Man-Machine Studies 21: 415-428.

[Kessler 1986] Kessler, C.M. and J.R. Anderson (1986). A Model of Novice Debugging in
LISP. Empirical Studies of Programmers. E. Soloway and S. Iyengar.
Washington, DC, Ablex Publishing Corporation: 198-212.

[Kessler 1989] Kessler, C.M. and J.R. Anderson (1989). Learning Flow of Control: Recur-
sive and Iterative Procedures. Studying the Novice Programmer. E. Solo-
way and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 229-
260.

73

[Korson 1986] Korson, T.D. and V.K. Vaishnavi (1986). An Empirical Study of the Effects
of Modularity on Program Modifiability. Empirical Studies of Program-
mers. E. Soloway and S. Iyengar. Washington, DC, Ablex Publishing Cor-
poration: 168-186.

[Kurland 1989] Kurland, D.M. and R.D. Pea (1989). Children's Mental Models of Recur-
sive Logo Programs. Studying the Novice Programmer. E. Soloway and J.
C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 315-323.

[Ledgard 1980] Ledgard, H.F., J. Whiteside, A. Singer and W. Seymour (1980). “The Natu-
ral Language of Interactive Systems.” Communications of the ACM
23(10): 556-563.

[Lee 1993] Lee, A.Y. and N. Pennington (1993). Learning Computer Programming: A
Route to General Reasoning Skills. Empirical Studies of Programmers:
Fifth Workshop. C. R. Cook, J. C. Scholtz and J. C. Spohrer. Palo Alto, CA,
Ablex Publishing Corporation: 113-1136.

[Lehrer 1988] Lehrer, R., T. Guckenberg and L. Sancilio (1988). Influences of LOGO on
Children's Intellectual Development. Teaching and Learning Computer
Programming: Multiple Research Perspectives. R. E. Mayer. Hillsdale, NJ,
Lawrence Erlbaum Asociates: 75-110.

[Lewis 1987] Lewis, C. and G.M. Olson (1987). Can Principles of Cognition Lower the
Barriers to Programming? Empirical Studies of Programmers: Second
Workshop. G. M. Olson, S. Sheppard and E. Soloway. Norwood, NJ,
Ablex: 248-263.

[Lewis 1990] Lewis, C., P. Polson, C. Wharton and J. Rieman (1990). Testing a Walk-
through Methodology for Theory-Based Design of Walk-Up-and-Use
Interfaces. Proceedings of ACM CHI'90 Conference on Human Factors in
Computing Systems: 235-242.

[Littlefield 1988] Littlefield, J., V.R. Delclos, S. Lever, K.N. Clayton, J.D. Bransford and J.J.
Franks (1988). Learning LOGO: Method of Teaching, Transfer of General
Skills, and Attitudes Toward School and Computers. Teaching and Learn-
ing Computer Programming: Multiple Research Perspectives. R. E. Mayer.
Hillsdale, NJ, Lawrence Erlbaum Asociates: 111-135.

[Macaulay 1995] Macaulay, L. (1995). Human-Computer Interaction for Software Design-
ers, Thompson Computer Press.

[Mayer 1988] Mayer, R.E. (1988). Introduction to Research on Teaching and Learning
Computer Programming. Teaching and Learning Computer Programming:
Multiple Research Perspectives. R. E. Mayer. Hillsdale, NJ, Lawrence
Erlbaum Asociates: 1-12.

74

[Mayer 1989] Mayer, R.E. (1989). The Psychology of How Novices Learn Computer
Programming. Studying the Novice Programmer. E. Soloway and J. C.
Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 129-159.

[Mayer 1987] Mayer, R.E. and A.L. Fay (1987). “A Chain of Cognitive Changes with
Learning to Program in LOGO.” Journal of Educational Psychology 79:
269-279.

[McKeithen 1981] McKeithen, K.B. (1981). “Knowledge Organization and Skill Differences
in Computer Programmers.” Cognitive Psychology 13: 307-325.

[Mendelsohn 1990] Mendelsohn, P., T.R.G. Green and P. Brna (1990). Programming Lan-
guages in Education: The Search for an Easy Start. Psychology of Pro-
gramming. J.-M. Hoc, T. R. G. Green, R. Samurçay and D. J. Gilmore.
London, Academic Press: 175-200.

[Merrill 1993] Merrill, D.C. and B.J. Reiser (1993). Scaffolding the Acquisition of Com-
plex Skills with Reasoning-Congruent Learning Environments. Proceed-
ings of the Workshop in Graphical Representations, Reasoning, and
Communication from the World Conference on Artifi cial Intelligence in
Education (AI-ED '93). Edinburgh, Scotland, The University of Edinburgh:
9-15.

[Merrill 1994] Merrill, D.C. and B.J. Reiser (1994). Scaffolding Effective Problem Solv-
ing Strategies in Interactive Learning Environments. Proceedings of the
Sixteenth Annual Conference of the Cognitive Science Society. Atlanta,
GA, Lawrence Erlbaum Associates.

[Merrill 1992] Merrill, D.C., B.J. Reiser, R. Beekelaar and A. Hamid (1992). Making Pro-
cesses Visible: Scaffolding Learning with Reasoning-Congruent Represen-
tations. Proceedings of the Intelligent Tutoring System Conference. C.
Frasson, G. Gauthier and G. I. McCalla. New York, Springer-Verlag: 103-
110.

[Miara 1983] Miara, R.J., J.A. Musselman, J.A. Navarro and B. Schneiderman (1983).
“Program Indentation and Comprehensibility.” Communications of the
ACM 26: 861-867.

[Miller 1981] Miller, L.A. (1981). “Natural Language Programming: Styles, Strategies,
and Constrasts.” IBM Systems Journal 20(2): 184-215.

[Miller 1994] Miller, P., J. Pane, G. Meter and S. Vorthmann (1994). “Evolution of Nov-
ice Programming Environments: The Structure Editors of Carnegie Mellon
University.” Interactive Learning Environments 4(2): 140-158.

75

[Modugno 1996] Modugno, F., A.T. Corbett and B.A. Myers (1996). Evaluating Program
Representation in a Visual Shell. Empirical Studies of Programmers: Sixth
Workshop. W. D. Gray and D. A. Boehm-Davis. Norwood, NJ, Ablex Pub-
lishing Corporation: 131-146.

[Moher 1993] Moher, T.G., D.C. Mak, B. Blumenthal and L.M. Leventhal (1993). Com-
paring the Comprehensibility of Textual and Graphical Programs: The
Case of Petri Nets. Empirical Studies of Programmers: Fifth Workshop. C.
R. Cook, J. C. Scholtz and J. C. Spohrer. Palo Alto, CA, Ablex Publishing
Corporation: 137-161.

[Myers 1990] Myers, B.A. (1990). “Taxonomies of Visual Programming and Program
Visualization.” Journal of Visual Languages and Computing 1(1): 97-123.

[Myers 1988] Myers, B.A., R. Chandhok and A. Sareen (1988). Automatic Data Visual-
izations for Novice Pascal Programmers. Proceedings of the IEEE 1988
Workshop on Visual Languages. Pittsburgh, PA: 192-198.

[Nanja 1987] Nanja, M. and C.R. Cook (1987). An Analysis of the On-Line Debugging
Process. Empirical Studies of Programmers: Second Workshop. G. M.
Olson, S. Shepard and E. Soloway. Norwood, NJ, Ablex: 172-184.

[Nardi 1993] Nardi, B.A. (1993). A Small Matter of Programming: Perspectives on End
User Computing. Cambridge, MA, The MIT Press.

[Návrat 1993] Návrat, P. and V. Rozinajová (1993). “Making Programming Knowledge
Explicit.” Computers in Education 21(4): 281-299.

[Návrat 1996] Návrat, P. and V. Rozinajová (1996). “Knowledge Based Programming: An
Experiment in Selecting a Data Type.” Arab Gulf J. Science. Res. 14(1):
79-100.

[Neal 1987] Neal, L.R. (1987). User Modelling for Syntax-Directed Editors. Human-
Computer Interaction - INTERACT '87. H. J. Bullinger and B. Shackel.
New York, Elesevier.

[Nickerson 1985] Nickerson, R.S., D.N. Perkins and E.E. Smith (1985). The Teaching of
Thinking. Hillsdale, NJ, Lawrence Erlbaum Associates.

[Nielsen 1994] Nielsen, J. (1994). Heuristic Evaluation. Usability Inspection Methods. J.
Nielsen and R. L. Mack. New York, John Wiley & Sons: 25-62.

[Nyuyen-Xuan 1987] Nyuyen-Xuan, A. and J.-M. Hock (1987). “Learning to Use a Command
Device.” European Bulletin of Cognitive Psychology 7: 5-31.

76

[Olson 1987] Olson, G.M., R. Catrambone and E. Soloway (1987). Programming and
Algebra Word Problems: A Failure to Transfer. Empirical Studies of Pro-
grammers: Second Workshop. G. M. Olson, S. Shepard and E. Soloway.
Norwood, NJ, Ablex: 1-13.

[Onorato 1986] Onorato, L.A. and R.W. Schvaneveldt (1986). Programmer/Nonprogram-
mer Differences in Specifying Procedures to People and Computers.
Empirical Studies of Programmers. E. Soloway and S. Iyengar. Washing-
ton, DC, Ablex Publishing Corporation: 128-137.

[Ormerod 1996] Ormerod, T.C. and L.J. Ball (1996). An Empirical Evaluation of TEd, A
Techniques Editor for Prolog Programming. Empirical Studies of Program-
mers: Sixth Workshop. W. D. Gray and D. A. Boehm-Davis. Norwood, NJ,
Ablex Publishing Corporation: 147-161.

[Pane 1996] Pane, J.F., A.T. Corbett and B.E. John (1996). Assessing Dynamics in
Computer-Based Instruction. Proceedings of ACM CHI'96 Conference on
Human Factors in Computing Systems. Vancouver: 197-204.

[Papert 1980] Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas.
New York, Basic Books.

[Parker 1987] Parker, J. and B. Hendley (1987). The Universe Program Development
Environment. Proceedings of INTERACT'87.

[Pattis 1995] Pattis, R.E., J. Roberts and M. Stehlik (1995). Karel the Robot: A Gentle
Introduction to the Art of Programming. New York, Wiley.

[Payne 1986] Payne, S.J. and T.R.G. Green (1986). “Task-Action Grammars: A Model of
the Mental Representation of Task Languages.” Human-Computer Interac-
tion 2(2): 93-133.

[Payne 1984] Payne, S.J., M.E. Sime and T.R.G. Green (1984). “Perceptual Structure
Cueing in a Simple Command Language.” International Journal of Man-
Machine Studies 21: 19-29.

[Pea 1986] Pea, R. (1986). “Language-Independent Conceptual "Bugs" in Novice Pro-
gramming.” Journal of Educational Computing Research 2(1).

[Pea 1984] Pea, R.D. and D.M. Kurland (1984). “On the Cognitive Effects of Learning
Computer Programming.” New Ideas in Psychology 2: 137-168.

[Pennington 1990] Pennington, N. and B. Grabowski (1990). The Tasks of Programming. The
Psychology of Programming. J.-M. Hoc, T. R. G. Green, R. Samurçay and
D. J. Gilmore. London, Academic Press: 45-62.

77

[Perkins 1985] Perkins, D.N. (1985). “The Fingertip Effect: How Information-Processing
Technology Shapes Thinking.” Educational Researcher 14: 11-17.

[Perkins 1989] Perkins, D.N., C. Hancock, R. Hobbs, F. Martin and R. Simmons (1989).
Conditions of Learning in Novice Programmers. Studying the Novice Pro-
grammer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum
Associates: 261-279.

[Perkins 1986] Perkins, D.N. and F. Martin (1986). Fragile Knowledge and Neglected
Strategies in Novice Programmers. Empirical Studies of Programmers. E.
Soloway and S. Iyengar. Washington, DC, Ablex Publishing Corporation:
213-229.

[Perkins 1988] Perkins, D.N., S. Schwartz and R. Simmons (1988). Instructional Strate-
gies for the Problems of Novice Programmers. Teaching and Learning
Computer Programming: Multiple Research Perspectives. R. E. Mayer.
Hillsdale, NJ, Lawrence Erlbaum Asociates: 153-178.

[Petre 1992] Petre, M. and T.R.G. Green (1992). “Requirements of Graphical Notations
for Professional Users: Electronics CAD Systems as a Case Study.” La Tra-
vail Humain 55(1): 47-70.

[Pirolli 1985] Pirolli, P. and J.R. Anderson (1985). “The Role of Learning from Examples
in the Acquisition of Recursive Programming Skills.” Canadian Journal of
Psychology 39: 40-272.

[Polson 1992] Polson, P.G., C. Lewis, J. Rieman and C. Wharton (1992). “Cognitive
Walkthroughs: A Method for Theory-Based Evaluation of User Interfaces.”
International Journal of Man-Machine Studies 36(5): 741-773.

[Putnam 1989] Putnam, R.T., D. Sleeman, J.A. Baxter and L.K. Kuspa (1989). A Summary
of Misconceptions of High School Basic Programmers. Studying the Nov-
ice Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence
Erlbaum Associates: 301-314.

[Reiser 1992] Reiser, B.J., D.Y. Kimberg, M.C. Lovett and M. Ranny (1992). Knowledge
Representation and Explanation in GIL, An Intelligent Tutor for Program-
ming. Computer-Assisted Instruction and Intelligent Tutoring Systems:
Shared Goals and Complimentary Approaches. J. H. Larkin and R. W. Cha-
bay. Hillsdale, NJ, Lawrence Erlbaum Associates: 111-149.

[Repenning 1993] Repenning, A. (1993). Agentsheets: A Tool for Building Domain-Oriented
Dynamic, Visual Environments. Dept. of Computer Science. Boulder, Uni-
versity of Colorado at Boulder: 171.

78

[Repenning 1994] Repenning, A. and T. Sumner (1994). Programming as Problem Solving: A
Participatory Theater Approach. Workshop on Advanced Visual Interfaces.
Bari, Italy: 182-191.

[Resnick 1994] Resnick, M. (1994). Turtles, Termites, and Traffic Jams: Explorations in
Massively Parallel Microworlds. Boston, The MIT Press.

[Riecken 1991] Riecken, R.D. (1991). What Do Expert Programmers Communicate by
Means of Descriptive Commenting? Empirical Studies of Programming:
Fourth Workshop. J. Koenemann-Belliveau, T. G. Moher and S. P. Robert-
son. New Brunswick, NJ, Ablex Publishing Corporation: 177-195.

[Rist 1995] Rist, R.S. (1995). “Program Structure and Design.” Cognitive Science 19:
507-562.

[Rist 1996] Rist, R.S. (1996). System Structure and Design. Empirical Studies of Pro-
grammers: Sixth Workshop. W. D. Gray and D. A. Boehm-Davis. Nor-
wood, NJ, Ablex Publishing Corporation: 163-194.

[Roberts 1988] Roberts, J., J. Pane, M. Stehlik and J. Carrasquel (1988). The Design View:
A Design Oriented, High-Level Visual Programming Environment. Pro-
ceedings of the 1988 IEEE Workshop on Visual Languages. Pittsburgh, PA:
213-220.

[Rogalski 1990] Rogalski, J. and R. Samurçay (1990). Acquisition of Programming Knowl-
edge and Skills. Psychology of Programming. J.-M. Hoc, T. R. G. Green,
R. Samurçay and D. J. Gilmore. London, Academic Press: 157-174.

[Saariluoma 1994] Saariluoma, P. and J. Sanjaniemi (1994). “Transforming Verbal Descrip-
tions into Mathematical Formulas in Spreadsheet Calculation.” Interna-
tional Journal of Human-Computer Studies 41(6): 915-948.

[Samurçay 1989] Samurçay, R. (1989). The Concept of Variable in Programming: Its Mean-
ing and Use in Problem-Solving by Novice Programmers. Studying the
Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ,
Lawrence Erlbaum Associates: 161-178.

[Scholtz 1993] Scholtz, J. and S. Wiedenbeck (1993). An Analysis of Novice Programmers
Learning a Second Language. Empirical Studies of Programmers: Fifth
Workshop. C. R. Cook, J. C. Scholtz and J. C. Spohrer. Palo Alto, CA,
Ablex Publishing Corporation: 187-205.

[Sherwood 1988] Sherwood, B.A. (1988). The cT Language. Champaigne, IL, Stipes Pub-
lishing Company.

79

[Shneiderman 1986] Shneiderman, B. (1986). Empirical Studies of Programmers: The Territory,
Paths and Destinations. Empirical Studies of Programmers. E. Soloway and
S. Iyengar. Washington, DC, Ablex Publishing Corporation: 1-12.

[Shneiderman 1977] Shneiderman, B., R.E. Mayer, D. McKay and P. Heller (1977). “Experi-
mental Investigations of the Utility of Detailed Flowcharts in Program-
ming.” Communication of the ACM 20: 373-381.

[Siddiqi 1996] Siddiqi, J., R. Osborn, C. Roast and B. Khazaei (1996). The Pitfalls of
Changing Programming Paradigms. Empirical Studies of Programmers:
Sixth Workshop. W. D. Gray and D. A. Boehm-Davis. Norwood, NJ, Ablex
Publishing Corporation: 219-231.

[Sime 1977a] Sime, M.E., A.T. Arblaster and T.R.G. Green (1977a). “Reducing Program-
ming Errors in Nested Conditionals by Prescribing a Writing Procedure.”
International Journal of Man-Machine Studies 9: 119-1226.

[Sime 1977b] Sime, M.E., T.R.G. Green and D.J. Guest (1977b). “Psychological Evalua-
tion of Two Conditional Constructions Used in Computer Languages.”
International Journal of Man-Machine Studies 5: 105-113.

[Sime 1977c] Sime, M.E., T.R.G. Green and D.J. Guest (1977c). “Scope Marking in
Computer Conditionals: A Psychological Evaluation.” International Journal
of Man-Machine Studies 9: 107-118.

[Sleeman 1988] Sleeman, D., R.T. Putnam, J. Baxter and L. Kuspa (1988). An Introductory
Pascal Class: A Case Study of Students' Errors. Teaching and Learning
Computer Programming: Multiple Research Perspectives. R. E. Mayer.
Hillsdale, NJ, Lawrence Erlbaum Asociates: 237-257.

[Smith 1995] Smith, D.C. and A. Cypher (1995). KidSim: Child Constructible Simula-
tions. Proceedings of the Imagina '95 Conference. Monte-Carlo: 87-99.

[Smith 1994] Smith, D.C., A. Cypher and J. Spohrer (1994). “KidSim: Programming
Agents Without a Programming Language.” Communications of the ACM
37(7): 54-67.

[Smith 1986a] Smith, R. (1986a). The Alternate Reality Kit: An Animated Environment
for Creating Interactive Simulations. Proceedings of the 1986 IEEE Com-
puter Society Workshop on Visual Languages. Dallas, IEEE.

[Smith 1992] Smith, R.B., D. Ungar and B.-W. Chang (1992). The Use-Mention Per-
spective on Programming for the Interface. Languages for Developing User
Interfaces. B. A. Myers. Boston, Jones and Bartlett Publishers: 79-89.

80

[Smith 1986b] Smith, S.L. and J.N. Mosier (1986b). Guidelines for Designing User Inter-
face Software. Bedford, MA, MITRE: 478.

[Soloway 1989] Soloway, E., J. Bonar and K. Ehrlich (1989). Cognitive Strategies and
Looping Constructs: An Empirical Study. Studying the Novice Program-
mer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Asso-
ciates: 191-207.

[Soloway 1984] Soloway, E. and K. Ehrlich (1984). “Empirical Studies of Programming
Knowledge.” IEEE Transactions on Software Engineering SE-10: 595-609.

[Soloway 1988] Soloway, E., J. Pinto, S. Letovsky, D. Littman and R. Lampert (1988).
“Designing Documentation to Compensate for Delocalized Plans.” Com-
munications of the ACM 31(11): 1259-1267.

[Spohrer 1986a] Spohrer, J.C. and E. Soloway (1986a). Alternatives to Construct-Based
Programming Misconceptions. Proceedings of ACM CHI'86 Conference
on Human Factors in Computing Systems: 183-191.

[Spohrer 1989a] Spohrer, J.C. and E. Soloway (1989a). Novice Mistakes: Are the Folk Wis-
doms Correct? Studying the Novice Programmer. E. Soloway and J. C.
Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 401-416.

[Spohrer 1989b] Spohrer, J.C., E. Soloway and E. Pope (1989b). A Goal/Plan Analysis of
Buggy Pascal Programs. Studying the Novice Programmer. E. Soloway and
J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 355-399.

[Spohrer 1986b] Spohrer, J.G. and E. Soloway (1986b). Analyzing the High Frequency
Bugs in Novice Programs. Empirical Studies of Programmers. E. Soloway
and S. Iyengar. Washington, DC, Ablex Publishing Corporation: 230-251.

[Taylor 1990] Taylor, J. (1990). “Analysing Novices Analysing Prolog: What Stories Do
Novices Tell Themselves About Prolog?” Instructional Science 19: 283-
309.

[Tognazzini 1992] Tognazzini, B. (1992). Tog on Interface. Reading, MA, Addison-Wesley
Publishing Co.

[Travers 1994] Travers, M. (1994). Recursive Interfaces for Reactive Objects. Proceedings
of ACM CHI'94 Conference on Human Factors in Computing Systems.
Boston.

[Van Laar 1989] Van Laar, D. (1989). Evaluating a Colour Coding Programming Support
Tool. People and Computers V. A. Sutcliffe and L. Macaulay. Cambridge,
Cambridge University Press.

81

[Vessey 1984] Vessey, I. and R. Weber (1984). “Conditional Statements and Program
Coding: An Experimental Evaluation.” International Journal of Man-
Machine Studies 31: 47-60.

[Wandke 1988] Wandke, H. (1988). User-Defined Macros in HCI: When Are They
Applied? Berlin, Sektion Psychologie der Humboldt-Universität zu Berlin.

[Watters 1995] Watters, A.R. (1995). Tutorial Article No. 005: The What, Why, Who, and
Where of Python. UnixWorld Online.

[Wiedenbeck 1986a] Wiedenbeck, S. (1986a). “Beacons in Computer Program Comprehension.”
International Journal of Man-Machine Studies 25: 697-709.

[Wiedenbeck 1986b] Wiedenbeck, S. (1986b). Processes in Computer Program Comprehension.
Empirical Studies of Programmers. E. Soloway and S. Iyengar. Washing-
ton, DC, Ablex Publishing Corporation: 48-57.

[Wiedenbeck 1989] Wiedenbeck, S. (1989). The Initial Stage of Program Comprehension, Uni-
versity of Nebraska.

[Wiedenbeck 1996] Wiedenbeck, S. and J. Scholtz (1996). Adaptation of Programming Plans in
Transfer Between Programming Languages: A Developmental Approach.
Empirical Studies of Programmers: Sixth Workshop. W. D. Gray and D. A.
Boehm-Davis. Norwood, NJ, Ablex Publishing Corporation: 233-253.

[Wirth 1983] Wirth, N. (1983). “Program Development by Stepwise Refinement.” Com-
munications of the ACM 26(1): 70-74.

[Wu 1991] Wu, Q. and J.R. Anderson (1991). Strategy Selection and Change in Pascal
Programming. Empirical Studies of Programming: Fourth Workshop. J.
Koenemann-Belliveau, T. G. Moher and S. P. Robertson. New Brunswick,
NJ, Ablex Publishing Corporation: 227-238.

