

ABSTRACT

The accurate formulation of boolean expressions is a noto-
rious problem in programming languages as well as data-
base and web query tools. Users have demonstrated great
difficulty with the common textual method for specifying
these queries, which uses the boolean operators

AND

,

OR

,
and

NOT,

partly because these words are used inconsis-
tently in natural languages

.

 This paper proposes a tabular
boolean query language that avoids the need to use named
operators, provides a concrete distinction between conjunc-
tion and disjunction, and makes grouping more explicit. A
study comparing this tabular language with textual boolean
expressions found that untrained users perform better when
they express their queries in the tabular language, and about
equally well when interpreting queries written in either lan-
guage. We conclude that systems can benefit by adopting a
tabular notation for query formulation.

Keywords

End-user programming, psychology of programming, user
studies, information retrieval.

INTRODUCTION

We are using a human-computer interaction approach to the
design of a primarily textual programming system for chil-
dren. One of the challenges of this effort is to craft the fea-
tures of the system to address the problems researchers
have observed in prior systems. While this may be straight-
forward in some cases, it is quite difficult in others.

The accurate specification of boolean expressions is a noto-
rious problem area in programming languages as well as
common database retrieval tasks such as searching library
catalogs or the web. Researchers have observed that the
common uses of the words

AND

,

OR

, and

NOT

 in natural
language lead to errors in the use of these words to name
the boolean operators in queries. For example, it is common
for users to substitute

AND

 for

OR

[2], and the intended
scope of the

NOT

 operator is ambiguous [3]. The difficul-
ties with boolean queries are intensified when several oper-
ators must be combined to form the query, and they persist
even when parenthesis are used to clarify grouping [2]. Tex-

tual languages that attempt to circumvent these issues by
using different vocabulary and query structure do not seem
to be effective [4]. Because no universally better alterna-
tives have been discovered, most programming languages
continue to rely on textual boolean expressions, while many
search engines have turned to less expressive query lan-
guages (for example, the plus and minus unary operators
for inclusion and exclusion).

Newsweek

 reports that even
with these simplifications, most web users are dissatisfied
with search engines, and less than 6% manage to use these
operators in their searches [5].

Several researchers have developed graphical interfaces to
the boolean query task. For example, truth tables, Venn dia-
grams, tiles in a two-dimensional grid, electrical circuits,
and water flowing through filters have all been used with
varying success. However, many of these interfaces are lim-
ited to very simple queries, and they use a large amount of
screen space. They would be difficult to incorporate into a
textual programming language where the boolean query
must be written and viewed in the context of the surround-
ing program.

PROPOSED TABULAR QUERY LANGUAGE

We propose an alternative query language that uses a tabu-
lar layout. Since our new programming language will repre-
sent data on

cards

 containing slots with values, we
designed

match forms

 to use cards as well. Figure 1 shows
a sample query. Criteria are placed into slots, one term per
slot. As many slots as necessary can be used, and they
implicitly form a conjunction. Negation is specified by
prefacing a term with the

NOT

 operator. Disjunction is
specified by placing one or more additional match forms
adjacent to the first.

Match forms avoid using the troublesome

AND

 and

OR

keywords by making those boolean operators implicit in the
structure of the query. This two-dimensional layout is simi-
lar to the grid of tiles described by Anick et al. [1], with
some additional cues to help users understand which opera-

Figure 1: Match forms expressing the query:
(blue and not square) or (circle and not green)

Improving User Performance on Boolean Queries

John F. Pane

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268 8078
pane+chi2000@cs.cmu.edu

Brad A. Myers

Human Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268 5150
bam+@cs.cmu.edu

Appeared in

CHI 2000 Extended Abstracts: Conference on
Human Factors in Computing Systems

, G. Szwillus and T. Turner,
Eds. The Hague, Netherlands: ACM Press, April 1-6 2000, pp.
269-270.

tor uses each dimension. The scope of the NOT operator is
made explicit by confining it to a single term. This pro-
posed query language can express arbitrarily complex que-
ries, although it requires some queries to be formulated in a
less concise way than full-fledged boolean expressions
would permit. Our proposed language will also provide a
way to negate an entire form, but that feature was not used
in the study described here.

We hypothesized that users would perform more accurately
in writing and reading queries that use match forms than
they would on equivalent queries that use textual boolean
expressions.

THE STUDY

The study used a grid of nine colored shapes, where a sub-
set of the shapes could be marked. The participants were
given 13 problems: a group of 5

code generation

 problems,
where some shapes were already marked and they had to
formulate a query to select them; followed by a group of 8

code interpretation

 problems, where they were shown a
query and had to mark the shapes selected by the query.
They solved each of these problems twice, once using a
purely

textual language

, and once using

match forms

. Each
group of problems was preceded by instructions which we
constructed to be as similar to each other as possible. We
varied the sequence in which the participants solved the
problems to prevent presentation order from impacting the
results. They were instructed to be as accurate as possible
and were told that there was no time limit.

33 volunteers participated in the study, 13 children (ages
10-14), and 20 adults (ages 18-46). 14 of the participants
were male and 19 were female. All but two were native
speakers of English. 7 participants reported that they had
written computer programs (4 adults, 3 children).

RESULTS

The hypothesis was evaluated by comparing each partici-
pant’s performance between the two conditions: textual
expressions and match forms. Statistical significance was
evaluated with a non-parametric sign test, with p<.05 as the
threshold for significance. No significant differences were
detected between children and adults, between males and
females, or between programmers and non-programmers,
so the following results are aggregated across all of the par-
ticipants.

On the code interpretation problems, participants answered
71% of the problems correctly when match forms were
used, and 74% correctly when textual queries were used.
This difference is not significant. However, on the code
generation problems, the participants answered 94% of the
problems correctly when using match forms, and only 85%
correctly when using textual queries. This difference is sig-
nificant (p<.0001).

DISCUSSION

On code interpretation tasks, the participants performed
about as well with match forms as they did with text. How-
ever, on code generation tasks, the participants performed
significantly better with the match forms than they did with
text. In addition, we informally observed that as the queries
became more complex the differences in favor of the match

forms increased. Although the match forms were not supe-
rior for code interpretation, they were not detrimental
either. The strong positive impact for generation probably
outweighs any ambivalence about the lack of an effect for
interpretation.

The strong effect of match forms over text came with very
little training. It is unlikely that the participants ever used
an equivalent tabular query language before, and they only
viewed a brief instruction page with a few examples before
beginning to solve the problems. While the instructions for
the textual problems were similarly brief, the participants
came to the problems with knowledge from a lifetime using
the words

AND

,

OR

, and

NOT

 in English, which may have
hindered them as much as it helped them

.

CONCLUSION

The results of this study suggest that the usability of web
search engines, database query tools, and programming lan-
guages can be improved, particularly for untrained users,
by replacing textual boolean expressions with tabular forms
for expressing queries. The match forms proposed here cir-
cumvent some serious problems that have been observed
with textual boolean expressions, yet are compact enough
to use in situations where screen space is limited.

ACKNOWLEDGMENTS

We would like to thank Albert Corbett, Bernita Myers, and
Barbara Pane for their contributions to this research, as well
as all of the anonymous participants. This research is
funded in part by the National Science Foundation under
Grant No. IRI-9900452. Any opinions, findings and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of
the National Science Foundation.

REFERENCES

1. Anick, P. G., Brennan, J. D., Flynn, R. A., Hanssen, D.
R., Alvey, B., and Robbins, J. M. A Direct Manipula-
tion Interface for Boolean Information Retrieval via
Natural Language Query. In

Proceedings of the Thir-
teenth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval

.

User Interfaces

. (Brussels, Belgium, September 5-7
1990), 135-150.

2. Greene, S. L., Devlin, S. J., Cannata, P. E., and Gomez,
L. M. No IFs, ANDs, or ORs: A Study of Database
Querying.

International Journal of Man-Machine Stud-
ies, 32

, 3 (1990), 303-326.

3. McQuire, A. and Eastman, C. M. Ambiguity of Nega-
tion in Natural Language Queries. In

Proceedings of the
Eighteenth Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval

.

Posters: Abstracts

. (1995), 373.

4. Pane, J. F. and Myers, B. A. Natural and Accurate Ways
to Specify the Selection of Objects from a Group.

sub-
mitted for publication

 (2000), http://www.cs.cmu.edu/
~pane/study3.html.

5. Tanaka, J., “The Perfect Search,” in

Newsweek

, 134

,

 13,
(September 27 1999), 71.

