Appeared in Proceedings of the 12th Annual Meeting of the Psychology of Programmers Interest Group, A. F.
Blackwell and E. Bilotta, Eds. Corigliano Calabro, Italy: Edizioni Memoria, April 10-13 2000, pp. 193-205.

The Influence of the Psychology of
Programming on a Language Design:
Project Status Report

John F. Pane and Brad A. Myers

Computer Science Department and
Human-Computer Interaction Institute
Carnegie Mellon University
pane+ppig2000@cs.cmu.edu

Keywords: POP-1.B barriers to programming, POP-I1.A. novice
programmers, POP-III.C all cognitive dimensions, POP-II1.B new
language.

Abstract

Research in Psychology of Programming (PoP) and related fields over
the past thirty years has identified many important usability issues for
programming languages and tools. However, when new programming
languages are designed these findings do not seem to have much impact,
so popular modern languages continue to exhibit many of the same old
problems. This paper reviews the progress of an ongoing project to
elevate the influence of PoP on the design of a new programming
language. In the context of designing a new programming language for
children, we cataloged and interpreted the prior work, performed new
studies where questions remained unanswered, and have focused on
usability throughout the design. In addition to producing a system that is
easier to learn and use than existing systems, we hope to exemplify a
process that could be adopted by other language designers to improve the
usability of their systems.

Introduction

Our research is based on a recognition that the capability to program —
to customize the behavior of computers — is a generally useful skill that
can benefit many diverse people. Indeed, many people who are not

trained to be programmers would like to have this capability. However
programming is well known to be a very difficult activity, especially for
beginners. Some of this difficulty is intrinsic to programming, but some
part of it can be relieved by careful attention to usability during the design
of programming languages and tools. The goal of our research is to
combine the specific knowledge that has been learned about the
Psychology of Programming (PoP) with the general techniques and
principles of Human Computer Interaction (HCI) to guide the design of
new programming systems.

This paper summarizes our work to date on building a new
programming system for children with a focus on usability. It begins with
a review of several of the more prominent issues reported by prior
research on beginner programmers, and describes some open questions
that led us to conduct a pair of new studies to examine how children and
other non-programmers naturally express problem solutions. These
studies exposed some of the ways that current programming languages
force people to express their solutions unnaturally. Informed by these
results, we sketch a preliminary system design that addresses many of
these issues. We note that the features of this design elevate the
importance of query specification, a well-known area of difficulty for
beginners. We describe a third study that characterized some of the
problems users have with boolean expressions and tested some
alternatives for query specification. Our new tabular query design
performed significantly better than boolean expressions, and will be
incorporated into the programming system. We are now finalizing the
language design and implementing it, and will continue to perform
additional studies with children to test its usability.

Historical Emphasis of Programming Language Research

As early as the mid-1980’s, it was observed that programming
language research and funding emphasized technical aspects of the
domain and neglected psychological aspects:

“Millions for compilers, but hardly a penny for understanding
human programming language use. Now, programming languages
are obviously symmetrical, the computer on one side, the
programmer on the other. In an appropriate science of computer
languages, one would expect that half the effort would be on the
computer side, understanding how to translate the languages into
executable form, and half on the human side, understanding how
to design languages that are easy or productive to use. Yet we do
not even have an enumeration of all of the psychological
functions programming languages serve for the user. Of course,
there is lots of programming language design, but it comes from
computer scientists. And though technical papers on languages

contain many appeals to ease of use and learning, they patently
contain almost no psychological evidence nor any appeal to
psychological science...The human and computer parts of
programming languages have developed in radical asymmetry”
(Newell & Card, 1985).
Since that time, substantial gains have been made in the PoP field and
related areas, but this progress has been somewhat isolated from the
technical research. New languages are usually spawned from technical
demands and innovations, and gain their critical mass from adoption by
the technical community. If PoP research is going to influence the designs
of new languages, it must become visible to the technical community, and
be in a form that can be readily applied.

Historically, the criteria that have guided design decisions have been
based on technical objectives. For example, designers may articulate
goals to build programming languages that are scalable, efficient,
reusable, provably correct, or that have mathematical elegance, etc. When
confronted by design decisions that are not fixed by these criteria, the
designer might select features to be similar to existing languages, or to be
different where prior languages are judged to be unsatisfactory on a
particular point. Other times, the designer may use intuition to guide
design decisions.

We suggest that PoP and HCI criteria and techniques should be
routinely included among the pool of guidelines and strategies that are
used to drive language design. These new criteria can be weighted as
appropriate for the objectives of a particular design. In our new language
for children, we take the extreme position of elevating usability criteria
above all other objectives. But even designs that place foremost emphasis
on certain technical requirements can benefit from consideration of the
usability criteria.

Recommendations from Prior Research

Our review of prior research on beginners yielded a wealth of
information. There is even more research to consider when the scope is
expanded beyond beginners. However, it is a challenging task to gather
this literature from its diverse sources and organize it into a form that can
be applied in a disciplined way to language design. It would be a great
contribution for the PoP community to publish a definitive reference
handbook, collecting and organizing the state of knowledge in this field.
Our own collection of the research applicable to beginners appears in a
technical report (Pane & Myers, 1996). While we intend to take into
account all of the points therein as we design our language, there are too
many to detail in this paper. It is worthwhile, however, to highlight some
of the more influential research and the themes that are most prevalent.

First, the field of HCI has general principles or heuristics that apply to
programming system design, such as to be consistent, keep it simple,
speak the user’s language, prevent errors, help the user get started, etc.
(Nielsen, 1994). The cognitive dimensions framework provides an
excellent set of more specific guidelines for assessing programming
systems, such as closeness of mapping, viscosity, hidden dependencies,
imposed guess-ahead and visibility, etc. (Green & Petre, 1996). However,
it is difficult to optimize along all of these dimensions at once, because
they are not independent. Improving a system on one measure may result
in reduced performance on another. To guide us in making these tradeoffs
it is useful to review studies of the target audience that identify the
problems that are common.

In our review of studies of beginners, the most prominent problems
seemed to fall along the following cognitive dimensions and HCI
principles:

e Visibility. Memory overload is a problem for all programmers,
but is particularly troublesome for beginners because they have
not yet developed strategies to relieve their memory load
(Anderson & Jeffries, 1985; Davies, 1993). The programming
system should make information visible or readily accessible any
time it is relevant.

e Closeness of mapping. Programming is a process of translating a
mental plan into one that is compatible with the computer (Hoc &
Nguyen-Xuan, 1990). The language should minimize the
difficulty of this translation by providing high-level primitives
that match the operators in the plan, including those that may be
specific to a domain the programmer is addressing in the
program. If the language does not provide these high-level
operators, programmers are forced to compose low-level
primitives to achieve their high-level goals. This synthesis has
been called one of the greatest cognitive barriers to programming
(Lewis & Olson, 1987).

¢ Speak the user’s language. The language should avoid using
words and symbols that are unfamiliar to users, or that have
conflicting meanings in other domains. When users are not sure
what to do they attempt to transfer knowledge from other
domains that are more familiar, including natural language and
mathematics (Hoc & Nguyen-Xuan, 1990). This will result in
errors and confusion if the semantics of the programming
language is not compatible with the semantics in these other
domains.

In addition, researchers have noted that the von Neumann

computational model is a stumbling block for beginners because it is not
familiar and has no real-world counterpart (du Boulay, 1989; du Boulay,

O'Shea, & Monk, 1989). Usability could be improved by selecting a
different model of computation based on a concrete real-world system
that is familiar to the audience (Mayer, 1989; Smith, Cypher, & Spohrer,
1994). This permits users to infer how the programming system will work
by consulting their existing knowledge and expectations about the
modeled system.

There are also several language constructs or features that have been
identified as especially troublesome. For example, looping control
structures have been studied extensively because they are so difficult.
Researchers have identified ways to improve performance by redesigning
these structures to more closely match the mental plans of the users
(Soloway, Bonar, & Ehrlich, 1989; Wu & Anderson, 1991). But it is also
notable that languages sometimes require users to perform iteration in
situations where aggregate operations can accomplish the task more
easily (Miller, 1981). Another notoriously difficult task is the accurate
specification of boolean expressions. This has been studied extensively
because it is important in other areas besides programming, such as in
database retrieval tasks. Researchers have observed that the common uses
of the words AND, OR, and NOT in natural language lead to errors when
these words are used to name the boolean operators in queries (Greene,
Devlin, Cannata, & Gomez, 1990); and the intended scope of the NOT
operator is ambiguous (McQuire & Eastman, 1995).

A somewhat controversial topic is whether to use a textual or a visual
language. Many people argue that programming is difficult because it
requires the precise use of a textual language, and that a system that
eliminates language will be inherently easier to use (e.g. Smith et al.,
1994). However, numerous researchers have demonstrated situations
where textual languages outperform visual languages (e.g. Green & Petre,
1992). It seems that visual languages might be better for small tasks, but
often break down for large tasks. The good news is that it is not always
difficult to learn to program in a textual language. In fact, the most
successful end-user programming system is the spreadsheet, which is
text-based (Nardi, 1993).

Studying the Language and Structure used by Non-Programmers

Much of the prior work offers guidance about things to avoid in
programming language design, but there are fewer prescriptions for good
ways to implement the necessary features. Since a failure to provide
closeness of mapping can explain why certain aspects of programming
are difficult, we set out to study problem-solving by non-programmers.
Our objective was to identify properties of these solutions that illuminate
how the language can be designed to better match beginners’ mental
plans.

We designed a pair of studies to investigate the language and structure
used by non-programmers in their solutions to programming problems,
similar to studies conducted in the 1970’s by Miller (1974; 1981). To
begin, we enumerated a list of essential concepts that are necessary in
programming, e.g. use of variables, boolean logic, arithmetic, iteration,
etc. We then selected a set of tasks that evoke these concepts from two
kinds of programs: an arcade game and a program that transforms and
calculates tabular data. Because we wanted to capture the natural
responses of the participants, we took care not to bias the language they
used in their responses. To accomplish this, we displayed graphical
depictions of the tasks along with terse captions. The participants were
mostly fifth-graders from a local public school, of mixed race, gender and
academic ability.

In examining the results, we saw interesting trends in the solutions. To
ensure that we were not just finding what we were looking for, we
developed a rating form to allow unbiased experts to characterize the
solutions on various dimensions. This was done by providing a rating
form to five independent analysts who are experienced programmers. The
following results are based on these analysts’ ratings.

The study found that the most prevalent style of programming
suggested by the solutions was a rule-based or event-based style (“if
pacman loses all his lives, it’s game over”). The participants tended to
perform operations in aggregate, rather than using iteration (“the
monsters turn blue and run away”). A natural language style was used for
arithmetic (“add 1000 to score”), but users who used mathematical
expressions were more accurate. Objects were normally moving, and
remembered their state (“if pacman hits a wall, he stops”). Operations
seemed more consistent with list data structures rather than arrays. The
participants did not construct complex data structures and traverse them,
but instead performed queries to obtain the necessary information when
needed.

Boolean expressions were avoided in many cases. Instead, the raters
identified other ways the participants expressed the necessary logic, such
as a mutually exclusive set of rules, or a general case followed by an
exception. It was observed that AND was frequently used where
disjunction (“or”) was intended, and that NOT was treated with lower
precedence than the other boolean operators, contrary to the precedence
used in most programming languages. Pane, Ratanamahatana & Myers
(2000) describes the full details of these studies.

Implications for Design

With the prior work and the results of these studies, we began to
develop a design for our new programming system for children. The

details of this design are currently being refined and tested, but this
section sketches out the general idea.

We have chosen a meeting as a concrete model for the computation.
In this scenario, a program is represented as a group of independent
agents seated around a fable.' The agents represent encapsulated pieces
of the program, and may work in cooperative or adversarial roles to
accomplish tasks. Some of the agents are programmed by the
programmer, while others may represent libraries of functionality that are
provided by the system.

All program data is represented on cards, which have unique names
and include an unlimited number of slots containing attribute-value pairs.
Cards held in the hand of a particular agent are private to that agent, so
they are invisible to the other agents. Cards that are placed on the table
are public, and so they are visible and modifiable by all agents. These
features provide mechanisms for data hiding and sharing. A special area
in the center of the table is designated as the board, which represents the
runtime screen of the program as seen by the end-user. Cards that are
placed on the board are displayed in a special way at runtime, with only
the contents of their appearance slot visible.

We have chosen a textual representation for the program to help
ensure that the proposed language will scale gracefully as the user builds
larger and more complex applications. Each agent has its own textual
agenda in a thought-bubble above its head, representing its program. The
agenda consists of a set of event handlers, which are actions to perform
when an event occurs. The system dispatches events by placing event
cards on the table. When an agent sees an event for which it has a
handler, the action of that handler is invoked. As part of the action, any
visible card can be viewed or changed, new cards can be created by
drawing blank cards from the new card pile and filling in their slots, and
existing cards can be deleted by moving them to the discard pile The
agent can delete the event card that invoked the action, preventing other
agents from seeing it. If it does not do this, other agents that have an
event handler for that event will have an opportunity to run before the
system cleans up by removing the event. Several choices are available to
determine which agent goes first when there are multiple candidates — this
issue is yet to be decided.

The language will support queries for accessing data. The result of a
query is a group of zero or more cards that can be operated on directly by
the operators of the language. The programmer will not be required to
write separate cases to handle the situations where zero objects are

" Note that the words used here for the components of the system were
chosen for the audience of this paper. We are still working on the exact
terminology to use in the final system.

returned, one object is returned, or multiple objects are returned. These
features reflect our observations that users access data by performing
queries instead of traversing data structures, and that they operate on
groups of objects in aggregate.

The system will supply agents that provide high-level functionality to
the programmer. For example, an animation agent may provide automatic
animation of objects that are on the board, based on the values in slots
such as position, velocity, etc. A collision agent may monitor the motions
of objects on the board, and report collisions among them by placing
collision events onto the table. A timer agent may provide services
related to periodic or one-time notification of the elapse of time, by
creating event cards that are visible to other agents. This mechanism for
encapsulating high-level behavior into agents is also available to the
programmer, enabling the creation of new abstractions that can be easily
shared among programs.

Figure 1 contains a sample event handler for a simplified
implementation of Pacman. This event handler will run after the system’s
collision agent has detected a collision and generated a collision event.
The event handler responds by inspecting the event to see which objects
collided. If the collision was between Pacman and a wall, the velocity slot
on the card representing Pacman is set to zero, causing the animation
agent to stop moving Pacman forward. If the collision was between
Pacman and a powerpill, the system is queried for all of the monsters, and
it returns a list of four monster cards. The handler then sets the color slots
to blue on all of the monsters in aggregate using the same operator that
was used earlier to set a single slot.

at the time that a Collision event appears
if the Collision event contains Pacman then
if the Collision event contains
a Wallthen
set Pacman's Velocity to 0
a Powerpill then
with all of the cards that match Monster calling them M
set M's Color to Blue
end with
end if
end if
end at

Figure 1: Example of an event handler that responds to collisions between
Pacman and a wall or a powerpill.

The textual language is verbose and uses a natural language style
similar to HyperTalk (Goodman, 1987), but we have taken care to avoid

many of the consistency problems in that language (Thimbleby,
Cockburn, & Jones, 1992). The programming environment will offer
structure editing features, such as popup menus and command
completion, to help users build syntactically correct programs and reduce
typing. White space will not be significant, although the environment will
try to indent the code appropriately. A small set of throw-away words
(e.g. the, a, and an) will be ignored, so they can be used wherever needed
to make the code more readable. Statements do not have to be terminated
with punctuation such as semicolons, but control structures that can
contain multiple statements must have end delimiters. These delimiters
repeat the name of the control structure to provide extra cues for
readability (Fitter & Green, 1979). A single conditional control structure
offers the features of if statements and case statements in a unified way.
Query results can be named temporarily with an identifier by using a
calling-it clause, (as suggested by Miller, 1981), but using the pronoun it
(as in HyperTalk) was rejected because it is too easy when editing to
change the binding of this variable accidentally.

This design attempts to provide the essential features of a
programming system in a way that responds to the research on beginner
programmers. The meeting model offers a concrete and familiar metaphor
for computation, unlike the von Neumann model. Cards provide visibility
and concreteness for variables and data objects, which are represented in
an abstract and invisible way in most other languages. The model
supports the event-based style of programming that was observed to be
common in non-programmers’ problem solving. This system encapsulates
state with objects, and the system-provided agents can provide autonomy,
but objects do not encapsulate code or support inheritance because these
features seem to be inappropriate for beginners.

Boolean Queries Revisited

The queries and aggregate operations featured in the proposed system
elevate the importance of a usable query language. The prior work does
not offer a ready solution, so we conducted a further study to investigate
alternative designs for the query mechanism. We included several of the
alternative formulations that were observed on the earlier studies, such as
using a general case followed by an exception, to see whether they were
more accurate than traditional boolean expressions. In addition, because
prior research suggests that non-textual query languages may be more
effective than textual syntaxes (e.g. Young & Shneiderman, 1993), the
study compared these textual alternatives against a proposed new query
language that uses tabular forms that we could integrate easily into our
textual language.

Since our new programming language will represent data on cards
containing attribute-value pairs, we designed the query form to also use a

card metaphor. For the purposes of this study, we simplified the forms by
leaving out the attribute names, and limiting the number of terms to three.
We called these match forms (see Figure 2). Criteria are placed into the
slots, one term per slot. All of the terms on a single form implicitly form a
conjunction. Negation is specified by prefacing a term with the NOT
operator. Disjunction is specified by including an additional match form
adjacent to the first one.

objects that match objects that match
. blue . circle
not square . not green

Figure 2. Match forms expressing the query:
(blue and not square) or (circle and not green)

This two-dimensional layout is similar to the grid of tiles described by
Anick et al. (1990) — one dimension implements intersection and the
other implements union. However, match forms provide cues to help
users remember which operator uses each dimension, such as the text in
the form heading and the visual grouping. In addition, the scope of the
NOT operator is made explicit by confining it to a single term. This
proposed query language can express arbitrarily complex queries,
although some queries have to be formulated in a less concise way than
pure boolean expressions would allow. To relieve this somewhat, the
forms in our proposed language will also allow an entire form to be
negated (“objects that do not match ...”), but that feature is not used in
this study.

Participants were presented with a series of problems that tested their
ability to interpret queries that we provided, and their ability to generate
queries to achieve a desired result. In the interpretation tasks, they were
shown a query and a grid of nine colored shapes, and were instructed to
checkmark the shapes that would be selected by the query. In the
generation task, they were presented with the same grid of shapes, some
of which were already checkmarked, and were instructed to write a query
that would result in the desired selection. In order to avoid confounding
the results, presentation order of the various problems was
counterbalanced, except that all of the query generation tasks were
completed before any of the query interpretation tasks were presented.

Thirteen children and twenty adults participated in this study. Because
there were no significant differences between the children and the adults,
the following results are reported for the group as a whole.

10

In summary, none of the alternative textual formulations for queries
were significantly better than boolean expressions. However, we did
observe significant trends in the way various queries are interpreted that
illustrate some of the confusions that people have with boolean
expressions. Interpretation of AND varied according to context: 85%
interpreted “select the objects that match blue and circle” as a boolean
conjunction while only 36% interpreted “select the objects that match
blue and the objects that match circle” as boolean conjunction (p<.0001).
In the latter query, 55% interpreted the query as disjunction (“or”

There was an interesting reversal in the precedence attributed to the
NOT operator. In the expression “select the objects that match not red and
square,” 64% interpreted NOT with high precedence, as if the expression
were parenthesized as “(not red) and square,” and 9% interpreted it with
low precedence (p<.001). However, in the expression “select the objects
that match not triangle or green,” only 9% interpreted NOT with high
precedence, and 67% interpreted it with low precedence (p<.001). When
we supplied parenthesis to try to override this tendency in the expression
“select the objects that match (not circle) or blue”, 39% of the participants
ignored the parenthesis and still gave the NOT lower precedence than the
OR, while only 12% gave it high precedence (p<.05).

The results with tabular query forms were encouraging. Participants
performed about equally well on query forms and boolean expressions
when they were interpreting queries, but performed significantly better
(p<.0001) generating queries with match forms (94% correct) than with
boolean expressions (85% correct).

Our conclusions from this study are that the word AND should be
avoided in programming languages because it is misinterpreted so often.
Also, it is dangerous to rely on implicit operator precedence rules, and
use of parenthesis for expression grouping is unreliable. However, tabular
query forms offer promise in improving the accuracy of queries, and we
will use them in our new system. Full details of this study are reported in
Pane & Myers (2000).

Current and Future Work

We are currently refining the details of our new computational model
and testing whether users will understand it and know what to do in order
to accomplish their goals. The system we are implementing will include a
complete interactive programming environment, with features such as
structure editing and word completion to facilitate program entry,
integrated debugging tools, etc. We will test the final product in
comparison with other programming systems for children, and hope to
demonstrate that our system is easier to learn and use.

In addition to producing this new system for children that contains a
new model for computation and other features suggested by PoP and HCI

11

research, we plan to apply this same process to developing new systems
for other audiences and domains. Hopefully this work will inspire other
language designers to give a more prominent role to PoP and HCI
research during the design process.

Acknowledgements

This research is funded in part by the National Science Foundation
under Grant No. IRI-9900452. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect those of the National Science Foundation.

References

Anderson, J. R., & Jeffries, R. (1985). Novice LISP Errors: Undetected Losses of
Information from Working Memory. Human-Computer Interaction, 1, 107-
131.

Anick, P. G., Brennan, J. D., Flynn, R. A., Hanssen, D. R., Alvey, B., & Robbins,
J. M. (1990). A Direct Manipulation Interface for Boolean Information
Retrieval via Natural Language Query, Proceedings of the Thirteenth Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (pp. 135-150). Brussels, Belgium.

Davies, S. P. (1993). Externalising Information During Coding Activities: Effects
of Expertise, Environment and Task. In C. R. Cook, J. C. Scholtz, & J. C.
Spohrer (Eds.), Empirical Studies of Programmers. Fifth Workshop (pp. 42-
61). Palo Alto, CA: Ablex Publishing Corporation.

du Boulay, B. (1989). Some Difficulties of Learning to Program. In E. Soloway &
J. C. Spohrer (Eds.), Studying the Novice Programmer (pp. 283-299).
Hillsdale, NJ: Lawrence Erlbaum Associates.

du Boulay, B., O'Shea, T., & Monk, J. (1989). The Black Box Inside the Glass
Box: Presenting Computing Concepts to Novices. In E. Soloway & J. C.
Spohrer (Eds.), Studying the Novice Programmer (pp. 431-446). Hillsdale,
NIJ: Lawrence Erlbaum Associates.

Fitter, M. J., & Green, T. R. G. (1979). When Do Diagrams Make Good
Computer Languages? International Journal of Man-Machine Studies, 11,
235-261.

Goodman, D. (1987). The Complete HyperCard Handbook. New York: Bantam
Books.

Green, T. R. G., & Petre, M. (1992). When Visual Programs are Harder to Read
than Textual Programs. In G. C. van der Veer, M. J. Tauber, S. Bagnarola, &
M. Antavolits (Eds.), Human-Computer Interaction: Tasks and
Organisation, Proceedings of ECCE-6 (6th European Conference on
Cognitive Ergonomics) . Rome: CUD.

Green, T. R. G., & Petre, M. (1996). Usability Analysis of Visual Programming
Environments: A 'Cognitive Dimensions' Framework. Journal of Visual
Languages and Computing, 7(2), 131-174.

Greene, S. L., Devlin, S. J., Cannata, P. E., & Gomez, L. M. (1990). No IFs,
ANDs, or ORs: A Study of Database Querying. International Journal of
Man-Machine Studies, 32(3), 303-326.

12

Hoc, J.-M., & Nguyen-Xuan, A. (1990). Language Semantics, Mental Models and
Analogy. In J.-M. Hoc, T. R. G. Green, R. Samurgay, & D. J. Gilmore
(Eds.), Psychology of Programming (pp. 139-156). London: Academic Press.

Lewis, C., & Olson, G. M. (1987). Can Principles of Cognition Lower the
Barriers to Programming? In G. M. Olson, S. Sheppard, & E. Soloway
(Eds.), Empirical Studies of Programmers: Second Workshop (pp. 248-263).
Norwood, NJ: Ablex.

Mayer, R. E. (1989). The Psychology of How Novices Learn Computer
Programming. In E. Soloway & J. C. Spohrer (Eds.), Studying the Novice
Programmer (pp. 129-159). Hillsdale, NJ: Lawrence Erlbaum Associates.

McQuire, A., & Eastman, C. M. (1995). Ambiguity of Negation in Natural
Language Queries, Proceedings of the Eighteenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval

pp. 373).

Miller, L. A. (1974). Programming by Non-Programmers. International Journal
of Man-Machine Studies, 6(2), 237-260.

Miller, L. A. (1981). Natural Language Programming: Styles, Strategies, and
Contrasts. IBM Systems Journal, 20(2), 184-215.

Nardi, B. A. (1993). 4 Small Matter of Programming: Perspectives on End User
Computing. Cambridge, MA: The MIT Press.

Newell, A., & Card, S. K. (1985). The Prospects for Psychological Science in
Human-Computer Interaction. Human-Computer Interaction, 1(3), 209-242.

Nielsen, J. (1994). Heuristic Evaluation. In J. Nielsen & R. L. Mack (Eds.),
Usability Inspection Methods (pp. 25-62). New York: John Wiley & Sons.

Pane, J. F., & Myers, B. A. (1996). Usability Issues in the Design of Novice
Programming Systems (School of Computer Science Technical Report
CMU-CS-96-132). Pittsburgh, PA: Carnegie Mellon University.

Pane, J. F., & Myers, B. A. (2000). Tabular and Textual Methods for Selecting
Objects from a Group. submitted for publication,
http://www.cs.cmu.edu/~pane/Study3.html.

Pane, J. F., Ratanamahatana, C. A., & Myers, B. A. (2000). Studying the
Language and Structure in Non-Programmers’ Solutions to Programming
Problems. International Journal on Human-Computer Studies, to appear.

Smith, D. C., Cypher, A., & Spohrer, J. (1994). KidSim: Programming Agents
Without a Programming Language. Communications of the ACM, 37(7), 54-
67.

Soloway, E., Bonar, J., & Ehrlich, K. (1989). Cognitive Strategies and Looping
Constructs: An Empirical Study. In E. Soloway & J. C. Spohrer (Eds.),
Studying the Novice Programmer (pp. 191-207). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Thimbleby, H., Cockburn, A., & Jones, S. (1992). HyperCard: An Object-
Oriented Disappointment. In P. Gray & R. Took (Eds.), Building Interactive
Systems: Architectures and Tools (pp. 35-55). New York: Springer-Verlag.

Wu, Q., & Anderson, J. R. (1991). Strategy Selection and Change in Pascal
Programming. In J. r. Koenemann-Belliveau, T. G. Moher, & S. P.
Robertson (Eds.), Empirical Studies of Programming: Fourth Workshop (pp.
227-238). New Brunswick, NJ: Ablex Publishing Corporation.

13

Young, D., & Shneiderman, B. (1993). A Graphical Filter/Flow Representation of
Boolean Queries: A Prototype Implementation and Evaluation. Journal of
American Society for Information Science, 44(6), 327-339.

14

