
 

Abstract

 

HANDS is a programming system for children that is
designed to be easier for beginners to learn and use than
other existing systems. Throughout the design and develop-
ment of HANDS, usability has been a primary focus, guid-
ing the generation of ideas for the system’s features and the
selection among various choices. This document presents
an overview of some of the prominent features of HANDS
along with the research that motivated their inclusion.

 

1. Sources of Design Guidance

 

A review of prior research in the areas of Psychology of
Programming (PoP) and Empirical Studies of Programmers
(ESP) has yielded a wealth of information about the prob-
lems that beginners have with programming [1]. In addi-
tion, the field of Human Computer Interaction (HCI) offers
general principles to be applied during the design process.
The HANDS design was guided by awareness and applica-
tion of this prior work.

In several areas where the prior work left open questions
about design issues, we have conducted new studies to
examine the questions. For example, researchers have
established that existing programming languages do not
speak the user’s language, and do not provide a close map-
ping between the programmer’s mental plan and the lan-
guage’s statements and operators. Two new studies
examined the language and structure of non-programmer’s
solutions to problem solving tasks [2], in order to design
HANDS to match these natural expressions, untainted by
exposure to programming. Later, when it became clear that
queries would be an important aspect of the HANDS sys-
tem, another study was conducted to examine methods for
expressing queries [3], because the prior work clearly
established that the boolean operators (AND, OR, NOT) are
problematic.

 

2. The HANDS Design

 

This human-centered approach to programming system
design has impacted almost every aspect of the HANDS

system. This paper discusses five important features of the
design, along with a brief summary of the motivating
research.

 

2.1. Model of Computation

 

Researchers have noted that the 

 

von Neumann

 

 computa-
tional model is difficult for beginners because it is unfamil-
iar outside the domain of programming, and it has no real-
world counterpart. It is hard to visualize the program’s data
because it has no concrete representation. Often it is not
evident whether a data element is allocated at some particu-
lar time or accessible from some particular place in the pro-
gram. HANDS attempts to relieve these problems by
providing a familiar concrete representation of the pro-
gram: an 

 

agent

 

 at a 

 

table

 

, reacting to events and manipulat-
ing information on 

 

cards

 

. All of the program’s data is stored
on cards, which are global, persistent and visible on the
table. Each card must have a unique name, which is not
case sensitive. There are no local variables. The front of
each card contains a list of name-value pairs called proper-
ties. Several properties are always present: the 

 

cardname

 

property holds the card’s name, and the 

 

x

 

 and 

 

y

 

 properties
contain the card’s position coordinates. The programmer
can add more properties as needed, so cards are similar to
records (or structs) in other languages. Each property on a
card has a unique name, which is not case-sensitive. The
programmer refers to the nectar property of a card named
flower with 

 

nectar of flower

 

 or 

 

flower’s nectar

 

. 

 

2.2. Event-Based Style

 

The prior research offered few recommendations about
which style of programming to select, except that full-
fledged object-oriented programming is very difficult. So
this question was examined in the first study of how non-
programmers naturally express their problem solutions.
This study identified 

 

event-based

 

 programming as the most
prevalent style in the participants’ solutions, so HANDS
adopted this style. A program in HANDS is a collection of
event handlers that are automatically called by the system
when a matching event occurs. Inside an event handler, the
programmer inserts one or more imperative statements to
execute in response to the event. After these statements are

 

Human-Centered Design of a Programming System for Children

 

John F. Pane

 

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268 8078
pane+hcc01@cs.cmu.edu

 
Presented at 

 
Children's Programming Odyssey

 
, HCC 2001 IEEE Symposia on Human-Centric Computing Languages and Environments, Stresa, Italy, September 5-7 2001.



 

executed, control returns to the system, where the next
event is dispatched. The system is not object-oriented.
There is no inheritance, and all of the code is centrally
located and is not encapsulated with the program’s data. 

 

2.3. Queries for Data Access

 

In our studies, we observed that users do not maintain
and traverse data structures. Instead they perform queries to
assemble a list of objects on demand. For example, they say
“all of the blue monsters.” HANDS provides a query mech-
anism to support this. The query mechanism searches all of
the cards for the ones matching the programmer’s criteria.
Queries begin with the word 

 

all

 

. If a query doesn’t specify
to look in a particular property, the query returns all of the
cards that have that value in any property. 

Queries depend on the accurate specification of boolean
expressions, which is an area that is very difficult and has
been studied extensively. The common uses of the words
AND and OR in natural language lead to errors when these
words are used to name the boolean operators in queries,
and the intended scope of the NOT operator is ambiguous.
To address these problems, we examined different key-
words and structures for specify boolean expressions, as
well as a tabular alternative called 

 

match forms

 

 that we
designed to be similar to cards. On a match form, all of the
listed values implicitly form a conjunction. Negation is
specified by prefacing a value with the NOT operator. Dis-
junction is specified by including an additional match form
adjacent to the first one. In our study, match forms were
more effective than the other methods we tested for specify-
ing queries, including textual boolean expressions. So,
HANDS will provide match forms for specification of que-
ries.

 

2.4. Aggregate Operations

 

Loops have been repeatedly identified as troublesome
for beginners. Researchers have identified ways to improve
performance by redesigning loops, yet these solutions have
not been adopted by most languages. More importantly,
many languages force users to use iteration in situations
where aggregate operations could accomplish the task more
easily. In our studies, the participants used aggregate opera-
tors, operating on whole sets of objects in one statement
rather than iterating and acting on them individually.
HANDS supports aggregate operations. All operators
accept lists as well as singletons for their operands, or even
mixture of lists and singletons.

 

2.5. Domain-Specific Support

 

The programmer must translate a mental plan into lan-
guage-level operations. When the language does not pro-
vide a direct mapping for a particular mental operator, the
programmer has to compose lower-level language primi-
tives to achieve the goal. This synthesis has been identified

by researchers as one of the greatest cognitive barriers to
programming. One example of this barrier was mentioned
above: some languages require the use of loops to synthe-
size operations that the programmer may otherwise con-
sider to be atomic. This issue also motivates the inclusion
of domain-specific support into a language. 

HANDS provides domain-specific features that enable
the programmer to easily create highly-interactive graphical
programs. The 

 

back

 

 property of a card, if present, is auto-
matically displayed on the back of the card when it is face-
down. If the value of this property is the name of a file con-
taining an image, the image is displayed on the back of the
card. Otherwise, the value in the property is displayed liter-
ally on the back of the card. Any card that contains slots
named 

 

speed

 

 and 

 

direction

 

 are automatically animated by
the system without any programming. Direction specifies
an angle expressed in degrees, using the convention that
zero points to the right and increasing angles go counter-
clockwise. Since some users may not be familiar with this
convention, an image of a compass is available in HANDS
for the user to refer to when working with directions. Speed
is a relative value, and can be positive or negative. Also,
HANDS uses events to make it easy for the program to
react to user input via the keyboard and mouse.

 

3. Summary

 

These five features of the HANDS design are only the most 
prominent of many factors in the human-centered approach 
that was taken during its design. It is expected that this 
approach will lead to a system that is easier for children to 
learn and use than any other existing programming system. 
We will conduct user-studies to evaluate this.

 

Acknowledgments

 

The author would like to thank Brad Myers and Albert
Corbett, and the many others who have contributed to this
work. This research is funded in part by the National Sci-
ence Foundation under Grant No. IRI-9900452. Any opin-
ions, findings and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect those of the National Science Foun-
dation.

 

References

 

[1] J. F. Pane and B. A. Myers, "Usability Issues in the Design of
Novice Programming Systems," Carnegie Mellon University,
Pittsburgh, PA, School of Computer Science Technical
Report CMU-CS-96-132, August 1996.

[2] J. F. Pane, C. A. Ratanamahatana, and B. A. Myers, "Study-
ing the Language and Structure in Non-Programmers’ Solu-
tions to Programming Problems," 

 

International Journal of
Human-Computer Studies

 

, vol. 54, pp. 237-264, 2001.
[3] J. F. Pane and B. A. Myers, "Tabular and Textual Methods for

Selecting Objects from a Group," in 

 

Proceedings of VL 2000:
IEEE International Symposium on Visual Languages

 

. Seattle,
WA: IEEE Computer Society, 2000, pp. 157-164.


