

A Programming System for Children that is Designed for Usability

John F. Pane

Computer Science Department and Human-Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

pane+esp7@cs.cmu.edu

Abstract

This paper proposes a new programming language and envi-
ronment for children. This system will be designed to be easy
to learn and use, without sacrificing the power necessary to
create sophisticated programs that rival commercial software
such as games and simulations. Throughout the design and
refinement of this system, I will apply prior results from
empirical studies of programmers and the psychology of pro-
gramming, my own empirical studies about the ways that non-
programmers naturally express solutions to programming
tasks, and usability testing.

Introduction

Most children who use computers are not programmers. Yet
many would like to create their own software, and to custom-
ize the software that they have. Typically, they would like to
create programs that are similar to the ones that they use, such
as games and educational simulations, which are highly inter-
active and graphically-rich. But there are no suitable tools for
this kind of programming task that are easy enough for begin-
ners to pick up and use. The powerful programming environ-
ments used by commercial software developers are clearly
inappropriate for beginners because they are very complex and
assume that the user has extensive programming expertise.
Other tools that were designed for beginners are effective only
in limited domains, such as Visual Basic for creating applica-
tions that are based on forms and dialog boxes, or spreadsheets
for tabular numeric applications. More general languages for
beginners, such as Logo, are easier to learn than languages for
professionals, but are not powerful enough to create highly
interactive graphically-rich programs like the commercial soft-
ware that children use frequently. This gap, between the qual-
ity and sophistication of commercial software and the
programs that children can create themselves, leads to disap-
pointment and frustration.

There is opportunity to narrow this gap, and my research will
use three complementary strategies:
1. Develop a

card game

 metaphor as a new way of thinking
about programming. This familiar real-world activity will
provide concrete analogs for many of the essential con-
cepts of programming that are currently abstract and diffi-
cult to learn.

2. Apply results from research on the psychology of pro-
gramming and human-computer interaction, supple-
mented by my own empirical studies, to influence the
design of a programming language and environment so
that it will be easier to learn and use.

3. Use modern software technology to simplify the pro-
gramming process, including direct manipulation and
demonstrational techniques, programming environment
technologies like structure editors, and mechanisms for
sharing software components and integrating them into
programs.

The result will be a programming language and environment
based on the card game metaphor, targeted at the needs and
abilities of children and other non-programmers.

Metaphor.

An appropriate concrete model can have a strong
positive effect on the usability of a programming language
[Mayer 1989]. Perhaps the most successful end-user program-
ming system to date is the spreadsheet, due in part to its famil-
iar and effective metaphor of financial tables [Nardi 1993].
Unfortunately, the spreadsheet metaphor lacks generality, and
thus many kinds of programs are not well-suited to implemen-
tation in a spreadsheet. In contrast, many programming lan-
guages for professional programmers are based on the very
general computational model of the von Neumann machine,
which has no familiar physical world counterpart. This
research will introduce a new computational model that is
amenable to general purpose computation, and yet has a strong
metaphorical tie to a familiar real-world system.

I am developing a metaphor for programming around the gen-
eral concept of a

card game

because it is familiar to children,
and it provides a framework that matches surprisingly well to
many of the essential concepts of programming. This meta-
phor is described below in “Preliminary Design: the Card
Game Metaphor”.

Human-Centered Approach.

More than a decade ago, Allen
Newell pointed out:

Millions for compilers but hardly a penny for under-
standing human programming language use. Now,
programming languages are obviously symmetrical,
the computer on one side, the programmer on the
other. In an appropriate science of computer lan-
guages, one would expect that half the effort would
be on the computer side, understanding how to
translate the languages into executable form, and
half on the human side, understanding how to design
languages that are easy or productive to use. … The
human and computer parts of programming lan-
guages have developed in radical asymmetry. [New-
ell 1985, p 212-3]

I will avoid making this same mistake in my project, by
acknowledging the importance of the human aspect of pro-

J. Pane - A Programming System for Children that is Designed for Usability 2

gramming, and taking an approach that focuses on usability
throughout the design process. I will utilize studies of the human
side of the programming process, as well as general Human
Computer Interaction (HCI) principles. I have summarized
research about beginner programmers, from the fields of The
Psychology of Programming and Empirical Studies of Program-
mers (ESP), in [Pane 1996]. Surprisingly, these results do not
seem to have influenced the design of popular new languages
such as Java. In contrast, the design of my system will be heavily
influenced by the prior work, and my research will contribute
additional empirical studies to the field. For example, I have
already begun using empirical studies to investigate how non-
programmers express their solutions to a set of programming
tasks. I found that most people use a rule-based or event-based
approach, so my system will be designed to support this ten-
dency.

Technology.

This research will apply a broad set of technologies
to making the system easy to use. For example, the system will
take advantage of user-interface technologies such as direct
manipulation and demonstrational techniques, and programming
environment technologies such as structure editors to reduce
tedious operations and make it easier to build error-free pro-
grams. It will also apply software engineering technologies such
as component integration mechanisms to enable users to extend
their programs by harnessing and reusing existing components,
resources and infrastructures, such as other programs or data on
the worldwide web.

Domain.

My system will be capable of producing a full range of
programs. However, the most successful end-user programming
systems are domain-specific, so my system will focus on the
class of software that children would like to create, such as
games and educational software. These are highly-interactive and
graphical, and contain animations, simulations and multimedia.
The card game metaphor, along with the graphics primitives that
I choose to build into the system, will facilitate the creation of
programs within this domain without sacrificing the general
capabilities of the underlying programming language. This is
similar to the way that the turtle metaphor in Logo transformed a
general purpose language into one that facilitates the building of
programs based on “turtle” graphics.

My thesis is that a programming system that uses a card game
metaphor for computation, and embodies principles from the
psychology of programming and human-computer interaction,
will enable children and other non-programmers to create sophis-
ticated programs containing animations, simulations and multi-
media. The new metaphor and language, with the supporting
technology in the environment, will make the essential concepts
of programming easy to learn, and yet will be more powerful
than existing systems for beginners.

To evaluate this thesis, I will develop a new programming lan-
guage and environment called HANDS, which stands for

H

uman-centered

A

dvances for

N

ovice

D

evelopment of

S

oftware.
This system will be based on the card game metaphor, and will
be designed with usability as a fundamental goal. I will utilize
user studies to evaluate and refine the system so that it is easier to

learn and use than existing systems for beginners, and so that
users can create sophisticated programs that rival commercial
software such as games and simulations.

Preliminary Design: the Card Game Metaphor

In my review of research examining beginner programmers, one
of the prominent themes to emerge is the importance of a familiar
concrete model for the computational system. Many languages
fail in this respect because they are based on models that are too
abstract or unfamiliar to beginners. One way to obtain these criti-
cal attributes of concreteness and familiarity is to use a well-
known real-world system as a metaphor for the computational
machine. In exploring alternatives for the HANDS system, I
found that a card game metaphor has many compelling attributes.
First, it is a familiar concept for my target audience. Second, the
basic elements of a card game (cards, players, hands, piles, table,
face values, suit, etc.) are concrete and do not require abstract
thinking or imagination. Finally, there seems to be a straightfor-
ward mapping between a card game and the essential concepts of
programming, so that programs can be represented in a complete
and consistent manner within the metaphor. Thus I hope many of
the difficult aspects of programming will be easier because they
are more concrete in the HANDS system, allowing beginners to
quickly get started in programming by transferring their knowl-
edge from card games.

Motivated by some preliminary analysis of the way non-pro-
grammers describe solutions to programming tasks, HANDS will
use a rule-based (or production system) style. In such systems, a
program is a collection of rules, each consisting of a condition
and one or more actions. When a rule is evaluated, the actions
may be performed depending on whether the condition holds
true. Apple Computer’s programming system for children named
Cocoa [Smith 1996] also uses a rule-based approach, although
Cocoa primarily uses graphical rewrite rules, while HANDS will
use more conventional text-based rules.

The HANDS system will support the development of interactive
graphical interfaces. Many modern development systems for this
kind of software, such as Microsoft’s Visual Basic [Halvorson
1996] and the HyperTalk language in Apple’s HyperCard [Good-
man 1987], use an event-based model of interaction. The event
model permits asynchronous actions from outside the program to
be dispatched to the appropriate handlers within the program,
although these dispatch mechanisms are sometimes quite com-
plicated. The event paradigm is close to the rule-based paradigm
in HANDS (the conditions of rules can be predicated on events).

Elements of a Card Game.

A program in the proposed HANDS
system will consist of one or more

players

, representing modules
or processes, sitting at a

table

 with a

game board

 on it. The table
represents the mechanism for sharing data among players, in the
style of “blackboard architectures” from AI and the “tuple space”
of Linda [Carriero 1989]. The game board represents the mecha-
nism for displaying information to the screen and receiving input
from the user.

Each player will hold a

hand

 of active

cards

 and will also have a

pile

 of inactive cards. Cards represent pieces of programs and

J. Pane - A Programming System for Children that is Designed for Usability 3

data. The cards in a player’s hand and pile are private, providing
information hiding. There also may be cards on the table, which
are visible to all players, providing global or shared memory. A
new card can be brought into the game by getting one from an
unlimited supply of

blank cards

 and adding information to it. A
card can be removed from the card game by placing it into a

dis-
card pile

. These operations are analogous to memory allocation
and deallocation.

There will be four

suits

, or types of cards:

rule cards

,

data cards

,

event cards

, and

game cards

. Rule cards contain instructions that
are executed by the system, in the form of if-then rules. Data
cards will have one or more named slots for holding information,
and thus are analogous to variables or records. Event cards are
special data cards that are managed by the system. They will be
placed on the table by the system to notify players about events
that have taken place, such as input from the user, or collisions
between objects. Game cards provide an encapsulation mecha-
nism whereby the details of a game are abstracted into an active
card that can then be used in other games. This abstraction mech-
anism will be discussed below.

When the program is being developed, all the elements will be
visible, so the user can create and operate on them by direct
manipulation. For example, a card can be placed at a particular
location on the board by dragging it with the mouse. When the
finished program is running, however, only the game board will
be visible to the user. The programmer will be able to switch
between running and developing at any time, allowing smooth
transitions between editing, running, testing, and debugging pro-
grams. Cards that are located on the table (but not on the board)
will be displayed as little card icons. However, when data cards
are on the board they will be displayed in a unique way – only
their appearance and/or value will be shown. Actually, every
graphical object on the board will really be a data card that is
being displayed in this special way. If there is a picture in the
appearance slot, the appearance will be rendered on the board.
Optionally, the contents of the value slot can be displayed. In this
case, if there is an appearance the value will be superimposed on
it. Otherwise, the value will be displayed alone. In either case,
the value will be shown exactly as it is appears on the card. This
makes it easy to output strings and numbers, and attributes such
as font, size, alignment, color can be set by directly manipulating
the value field on the card. A double-click on a graphic on the
board will bring up a window showing the full card.

Mechanisms.

HANDS will provide built-in support for handling
input from the user, for moving and animating graphical objects,
and for detecting collisions among those objects. Each of these
built-in features will be represented as players at the card table.
For example, the

event manager

 player will receive input from
the user such as by mouse clicks and keystrokes, post event cards
onto the table representing these events. Similarly, the

collision
detector

 player will notice when graphical objects have collided,
and will post collision events onto the table. If other built-in
capabilities are provided in the HANDS system, additional sys-
tem players will represent them at the table. Similarly, this mech-
anism could be used for importing functionality into a card game
from libraries, and for importing functionality from other exist-

ing programs or components. In the latter case, the player could
act as a translator between the protocols and data of an external
component and the HANDS system where all program data is
represented by cards.

Players correspond to processes or modules in conventional pro-
gramming systems, and will not necessarily correspond to actual
people playing the game. For example, in a PacMan implementa-
tion, there might be one player for the PacMan, one for each of
the monsters, and possibly one to handle all the dots on the board
since some of them blink and they must be counted to see when
the last one is eaten (to go to the next level). Distributed pro-
grams could be represented with multiple boards, one for each
display, and players could transparently be either be local or on a
remote machine.

When the program is running, each player around the table is
given a turn, beginning with the first system player (the animator
player) and moving clockwise from player to player. During a
player’s turn, each rule card in the player’s hand is evaluated, in
the order that they appear in the hand at the beginning of the turn.
Only the cards that are in the player’s hand at the beginning of
the turn will be evaluated during that turn, and each one will be
evaluated exactly once during the turn. This evaluation order cor-
responds to the ordering of rules in event-based languages like
Sassafras [Hill 1986]. During debugging mode, the system will
indicate whose turn it is by giving the player a yellow halo. In
that player’s hand, the currently-executing card is also given a
yellow halo.

Naming and Visibility.

Cards in the following locations are visi-
ble to a player: the player’s hand, the player’s pile, the table and
the board. However, the cards in the hands or piles of other play-
ers are not visible to the player, to help enforce modularity. Of
course, all cards will be visible to the programmer so that the
program can be constructed and debugged, but each player will
have to send messages to the other players to retrieve or modify
the data on those players’ cards.

In the course of evaluation, a rule may act upon the visible cards
in the following ways:
• examine the information on the cards,
• modify the information on the cards,
• move cards from one visible location to another
• move cards to the discard pile
• draw blank cards and put information on them,
• copy an existing card, which creates a new card that differs

from its prototype only in its name,
• give a data card to another player, causing it to immediately

become a part of the other player’s hand.
In addition to its contents, each card will have identifying infor-
mation at the top: its name (which must be unique), the name of a
group that the card is a member of (optionally left blank), and its
suit (rule, data, event, or game). This provides a limited three-
level naming hierarchy for cards, which permits the programmer
to not only refer to individual cards, but also to collections of
cards. Full inheritance has been shown by previous systems to be
too complex for novices, but a fixed 2-level inheritance hierarchy
has been shown to be understandable [Pausch 1992].

J. Pane - A Programming System for Children that is Designed for Usability 4

For example, suppose the event manager player posts a mouse
event card to the table as a result of the user clicking on the “+”
button of a calculator. Here are four ways that a rule card could
refer to this card:
•

an event

, in which case other mouse clicks, and keystrokes
and other events would also match.

•

a click

, in which case other mouse clicks, but not non-click
events, would match.

•

click12345

, in which only a click with this name would
match.

•

a click whose target is +

, which corresponds to the
associative memory access style of Linda.

The hierarchical naming structure can be used to manipulate
groups of items together, and to set the context of a search. This
mechanism will handle many of the situations where traditional
programming languages would require explicit looping. For
example,

move all cards with value = 8 to my hand

.

Events will be automatically posted to the table by the event
manager player during his turn at the beginning of each round,
and removed from the table during his next turn if they haven’t
already been removed by one of the other players. Players that
respond to the event have the option of leaving the event on the
table for other players to see, or to remove it. This very simple
rule is in contrast to event based systems like HyperCard and
Visual Basic, which have complex rules about how events are
dispatched and handled. The system automatically fills in the tar-
get field of an event card. For example, when there is a click on
the board, the card representing the frontmost graphical object
under the click will be the target of the event. A system inquiry
can be made in cases where the programmer wants a longer list
of possible targets, such as all of the graphical objects under the
click instead of the frontmost one.

Domain Specific Functions.

In addition to handling user input
events, the system will provide players that handle the automatic
maintenance of several other details that commonly occur in
many programs today, especially the games, simulations and ani-
mated stories that kids want to create. The system will provide a

timer

 player who can be used for coordinating actions and speci-
fying rates and durations. The system will automatically main-
tain a

location

 slot containing the coordinates of the card’s on
the board. An

animator

 player will automatically move cards
around on the board if they have a value in the

velocity

 slot,
updating the location fields and the rendering of the appearance
on the table. I will investigate ways to specify more complex
motions by filling an animation slot with appropriate information
such as path and duration, based on earlier work on easily speci-
fying animations [Myers 1996]. Furthermore, the

collision detec-
tor

 player will detect collisions of objects, posting collision
events so that the objects can respond accordingly. While the
built-in functionality of these system players will probably not be
viewable as rule cards, any configuration options will be repre-
sented by cards in these players’ hands.

Abstraction Mechanism.

One of the difficult challenges of
designing this new system is to find a good way to provide an
abstraction mechanism within the card game metaphor. It
appears that it will be necessary to violate the metaphor in order

to provide this feature, since real-world card games do not
already have a feature that I can use to represent this. Thus I am
trying to invent a concrete representation for abstraction that is a
simple extension of the existing card game model. While this is
still to be finalized, I am currently exploring the idea of using a

game card

 to represent a “recursive” card game, which I will call
a

subgame

. Internally, the subgame would be complete with
players, a table and a game board, while the external view would
be simply a card with an appearance and the other attributes of
visible data cards. The appearance of the game card would
always reflect the appearance of the game board in the subgame.
Parameter passing could be provided by mapping additional slots
on the game card to data cards on the table of the subgame that
have the same names and values. The appearance and the param-
eters would be the only parts of the subgame that would be visi-
ble via the game card. All other aspects of the subgame,
including the other cards and the players, would be invisible from
the outside, providing abstraction barriers.

The recursive card game would run in parallel to the game that
contains it (and any other subgames that exist in the program).
From the outside, a game card would appear to be very similar to
other data cards on the game board, except they will seem to be
autonomous or “alive”, since externally they can appear to
change without explicit action by any visible players.

In this scenario for implementing abstractions as parallel pro-
cesses in subgames, I must still work out several issues. One
example is synchronization: when a player writes into the param-
eter slots on a game card she would be passing parameters to the
subgame. However, the subgame would need to “know” when all
of the parameters are ready before beginning to evaluate them. A
similar synchronization problem occurs when the subgame is
returning results to the enclosing game.

Sharing and Reuse.

Cards, and thus abstracted card games, can
be shared with other users, by importing them into other card
games. The system is intended to be an open system. To support
simulations, there will be a simplified interface to mathematics
and arithmetic, possibly using a calculator like in Cocoa or the
dialog boxes used in Model-It [Soloway 1996]. There will be a
standard interface with which expert programmers can code new
primitives in high-performance languages such as C or C++ and
encapsulate one or more of them into game cards for import into
future programs. This is a way to provide libraries for specific
domains which would appear to the novice user of HANDS as
built-in primitives.

Technology

In building the HANDS system, I will take advantage of existing
technologies wherever possible to improve the usability of the
system. For example, direct manipulation and demonstrational
techniques can reduce the effort required to specify portions of
the program or data. Programming environment technology can
simplify tedious programming tasks and reduce syntax errors,
provide active assistance in helping the user to create programs
that are semantically correct, and provide sophisticated query
and navigation mechanisms to assist the user in understanding
and debugging the parts of the program that are already written.

J. Pane - A Programming System for Children that is Designed for Usability 5

The system will allow the user to take advantage of existing com-
ponents that are already available on their computer or on the
worldwide web, by providing mechanisms for harnessing them
within their HANDS program. The game card mechanism will be
used to represent interfaces to these external resources, thus
allowing them to be integrated into the user’s program.

Use of a Textual Language

There has been a widespread expectation that visual program-
ming systems are superior to textual systems. However, to date
nobody has been able to prove that a visual language is superior
to textual languages for all tasks. To the contrary, often textual
languages are actually superior to visual languages [Green 1992].
It is not necessarily always difficult to learn to program in a tex-
tual language. In fact, the most successful end-user programming
system (among adults) is spreadsheets, which uses a text-based
language for formulas [Nardi 1993].

To minimize the difficulty of the textual language, I will incorpo-
rate knowledge about how people naturally express problem
solutions, and knowledge about aspects of current programming
languages that are particularly confusing. I will also create an
editor and evaluation environment (interpreter and debugger) that
overcome many of the problems that have been noted with tex-
tual languages. For example, many of the problems that begin-
ners have with textual languages can be attributed to problems
with punctuation and other syntactic embellishments that are
used to allow the compiler to efficiently and correctly parse a
stream of text. The new language will eliminate the need for most
of this punctuation by using structure-editor or form-based tech-
nology, which provides slots for the unambiguous placement of
program elements.

Even in textual languages, it is helpful to permit the user to
define parts of the program by direct manipulation or by example
[Lewis 1987]. So, HANDS will support direct manipulation. For
example, the user will be able to draw a picture and use it as pro-
gram data, rather than having to write program code to generate
the picture. The user will be able to move objects and change
their attributes directly like in a drawing package, and have the
environment notice these manipulations and include them into
the program. This is a simple form of “programming by demon-
stration” [Myers 1992] which has been shown to be a good way
of allowing non-programmers to get started with programming
[Modugno 1994] but which tends to be limited to only small pro-
grams. Incorporating these syntax editor and demonstrational
techniques are expected to alleviate many of the problems that
researchers have identified with prior textual languages.

Domain

I expect that middle school children, as well as older children and
their teachers, will be able to use HANDS to create complete and
interesting games and educational simulations of the form of
PacMan, Number Munchers, Living Books, PlayRoom, Busy-
Town, SimCity and its siblings, and Model-It. I expect that
HANDS will capable of implementing all of the kinds of simula-
tions that can be programmed in Cocoa, as well as the kinds of
animations that can be set up in KidPix. Simple direct manipula-

tion programs or hypertext programs, like the ones that can be
created using Visual Basic and HTML editors, will be easy to
produce in HANDS. Multi-user games and activities should be
easy to program in HANDS since it will allow some of the card
game players to be on remote machines. Text editing and click-
able links (such as for Living Books and HTML pages for the
WWW) will also be supported in HANDS. Initially, HANDS
will only provide 2-D graphics, but there is nothing inherent in
the language that precludes extension to 3-D.

The end-user programming community has developed a reposi-
tory of Problem-Centered Visual Language Benchmarks [Hüb-
scher 1996], which are intended for the visual languages and the
end user programming communities to test the effectiveness of
new programming approaches. The benchmarks span many dif-
ferent kinds of problems which highlight strengths and weak-
nesses of various programming languages. Thus far, no single
language has provided solutions to every problem in the bench-
mark. It is my goal that HANDS will handle all of these prob-
lems, demonstrating that the system is powerful, complete and
general purpose.

Background Research

The following paragraphs summarize the most important find-
ings from an extensive review of research relevant to beginner
programmers from the Empirical Studies of Programmers and
Psychology of Programming communities [Pane 1996].

Metaphor.

With its card game metaphor, HANDS will attempt
to capitalize on the beginner’s knowledge about the world. The
card game seems to be a good choice because it is drawn from a
concrete real-world system that is familiar to the user audience,
as recommended by [Lewis 1987]. It will provide a framework
for understanding the system, instead of requiring the user to
learn a collection of rules that may otherwise seem arbitrary, and
it will allow the user to infer how parts of the system work. There
will be a close correspondence between the system and this met-
aphor: features in one will exist in the other, and these features
will behave consistently in the two systems, as recommended in
[Halasz 1982].

Human Interpreter Problem.

When they are stumped, begin-
ners will attempt to transfer knowledge from other domains even
if they are not appropriate [Hoc 1990]. One example is the
human interpreter problem, where the program is read in a natu-
ral language manner, leading to incorrect interpretation [Bonar
1988]. HANDS will attempt to reduce this problem by carefully
selecting the syntax and keywords of the language to avoid the
use of words and phrases that might conflict with natural-lan-
guage interpretations.

Misinterpretation and Typos.

Programmers are susceptible to
incorrect interpretations due to misleading appearances. One
example is indentation, which if incorrect can mislead the pro-
grammer about whether or not code is within a control structure
[du Boulay 1989]. Since HANDS will use a structure editor,
indentation will always correspond to the computer’s interpreta-
tion of the program. Correct indentation has been shown to
improve comprehension [Cunniff 1989]. HANDS may also use

J. Pane - A Programming System for Children that is Designed for Usability 6

additional cues to indicate nesting, similar to the notations used
in outlines. A related problem is that many textual languages
assign vastly different interpretations to constructs that have only
subtle distinctions in syntax [Fitter 1979]. The HANDS language
will be designed so that a typographical error or cognitive slip
will likely result in an invalid program, so that the system will
detect the error for the user, as suggested by [Green 1996].

Memory Burden.

Human working memory limitations account
for a large part of the inferior performance of novice program-
mers [Anderson 1985]. HANDS will use typography, color and
graphical embellishments to attract attention to, and improve
comprehension of, important information, as suggested in [Fitter
1979]. We will try to avoid using these signals to highlight infor-
mation of questionable importance, such as the keywords of the
language [Baecker 1986].

Immediate Feedback.

HANDS will provide immediate feed-
back and encourage incremental testing of programs as recom-
mended in [Green 1996].

Debugging.

Novices tend to introduce new bugs while they are
debugging [Gugerty 1986]. HANDS will try to help the program-
mer track recent changes, and to back out of them when it
becomes clear that they are not beneficial, through use of multi-
level undo and checkpointing.

High-level Domain-specific Primitives.

One way to define pro-
gramming is the process of transforming a mental plan in famil-
iar terms into one that is compatible with the computer [Hoc
1990]. The closer the language is to the user’s original plan, the
easier this refinement process will be. A very low-level language
with many simple primitives requires the user to synthesize
higher-level operations. This is one of the great difficulties in
programming [Lewis 1987]. When there are many different
choices, more planning is required, and this increases the likeli-
hood of backtracking and revision, which slows the programmer
[Gray 1987]. HANDS will provide high-level, domain-specific
primitives for the highly-interactive visually-rich applications
that I am targeting, and will be extensible so that similar high-
level primitives can be provided for other domains.

Natural Language vs. Natural Expressions.

The HANDS pro-
gramming language will not be based directly on natural lan-
guage, since the computer cannot reliably understand human
conversation. Natural-language conversation among humans is
not precise, and relies on shared context, cues that indicate mis-
understanding, and clarification dialogs [Grice 1975]. However,
in designing the HANDS language, I look at how people express
their ideas. When asked to write step-by-step informal natural
language procedures, non-programmers tend to use certain
phrases to indicate program constructs such as loops [Bonar
1988]. However, they omit many details, expecting a human-like
interpreter to fill them in. The system can support the program-
mer by providing constructs that are as similar as possible to the
common natural language phrases, and directing the program-
mer’s attention to necessary details that may otherwise be over-
looked.

Terseness and Conciseness.

HANDS will not strive for ele-
gance and terseness in its language, because these features are
not useful for beginners [Mendelsohn 1990]. Conciseness may
be helpful in some cases, such as eliminating redundancies and
excessive punctuation and allowing optional information that has
intelligent defaults [Cordy 1992], but this will not be taken to
extremes. Novice programmers are more verbose than experts in
describing tasks to computers or to humans [Onorato 1986], so
HANDS will try to accommodate this characteristic of beginners.

Notation.

The HANDS language will be self-consistent, and its
rules will be uniform, the meanings of keywords will be indepen-
dent of context, and exceptions will be minimized, as recom-
mended in [du Boulay 1989]. HANDS will provide extra cues in
control structures, since these help beginners [Sime 1977].

General HCI Principles.

In addition to the above, the HANDS
design will apply general Human-Computer Interaction (HCI)
principles. These include such recommendations as: be consis-
tent, provide feedback, prevent errors, etc. [Nielsen 1993, pp.
115-163].

Empirical User Studies

I will conduct new empirical studies to fill in important missing
areas of research about novice programmers. This series of stud-
ies will be mostly with elementary school and middle school
children who do not already know how to program, but who have
familiarity with a variety of computer applications. The studies
will be designed to discover how they think and talk about pro-
gramming concepts. The first area I’ve chosen to look at is the
language and structure of the solutions that non-programmers
give to programming tasks. Throughout the design of the system,
I will conduct other studies to focus on additional questions that
arise, and to test my design ideas.

Pilot Study.

To see if a study would be likely to get useful results
a pilot study was conducted with 11 fifth and sixth graders at
Winchester-Thurston School in Pittsburgh in June, 1996. Stu-
dents were asked to describe how they would make a PacMan
move about the screen, eating dots and killing or being killed by
monsters. Among the observations were:
• The students expected objects to be moving as their normal

behavior, and wrote commands that would affect the motion.
For example, “If PacMan hits a wall, he stops.” This is in con-
trast to conventional systems where to make something keep
moving requires the continuous issuing of commands.

• Most of the control was expressed in an “event language” or
“production system” style, with rules controlling behaviors.
For example, “If PacMan loses all of his lives, it’s game over.”

• The students preferred to express the general case first, and
then later modify it with exceptions. For example, “When you
encounter a ghost the ghost should kill you. But if you get a lit-
tle pill you can eat them.” This is in contrast to conventional
languages that generally require the conditions to be written
before the actions, requiring the user to think about all the
cases before beginning to construct the expression.

• Operations like counting, which are traditionally expressed
with iteration, were usually expressed implicitly by operating
on sets of objects. For example, “When PacMan eats all of the

J. Pane - A Programming System for Children that is Designed for Usability 7

yellow balls he goes to the next level.” This capability is not
provided by any of today’s novice languages.

Subsequent Study.

As a first step in a subsequent study, the pro-
gramming task was broken down into the essential and useful
concepts required when creating interactive games and simula-
tions. In addition to seeing how the subjects discuss program-
ming in general, this study investigates how they express these
particular concepts. Some examples are: variables, assignment of
values, and initialization; comparison of values and boolean
logic; incrementing and decrementing counters and other arith-
metic; iteration and looping; conditionals and other flow control;
searching and sorting; animation; parallelism (multiple things
happening at the same time); collisions and interactions among
objects; and responding to input from the user.

In addition to investigating how children think about the funda-
mental concepts, I am also interested in the vocabulary they use
for describing the actions. For example, is “when” or “if” more
popular as a conditional? How do people express conjunction
and disjunction (since “and” and “or” are commonly used incor-
rectly [du Boulay 1989])? The sessions were audiotaped to make
sure I can go back and look at the specific words used as neces-
sary.

A real risk in designing this study was that the researcher would
bias the students by the language used in asking the questions.
For example, the researcher could not just ask: “How would you
tell the monsters to turn blue when the PacMan eats a power
pill?” because I expect this would lead the students to simply par-
rot the question back. Therefore, the students were shown small
excerpts from working games and other familiar applications
running on a computer, and then asked: “How would you make
the computer do this?” We used a collection of pictures and
QuickTime movie clips showing various situations that arise in
PacMan which illustrate the various concepts. This study was
conducted with 13 fifth graders at East Hills Elementary School
in Pittsburgh during May 1997, and the results are forthcoming.

Related Work

In addition to the studies of programmers mentioned above, there
have been a number of systems which have tried to be easy-to-
learn and embody appropriate principles. The most successful
and widely used language for children has been Logo [Papert
1980]. Logo uses the metaphor of a turtle executing a text-based
program to move around and draw in a graphics world. Rehearsal
World is a programming environment based on a theater meta-
phor, which was designed for adult curriculum designers with no
programming experience [Gould 1984]. The system provides a
concrete manifestation of the underlying Smalltalk programming
system.

Agentsheets and its descendants are a family of programming
environments for end-users, based on autonomous communicat-
ing agents in a two-dimensional grid-based world [Repenning
1995]. These systems combine graphical rewrite rules and pro-
gramming by example to simplify programming. One descendent
of Agentsheets is a modern programming environment for chil-
dren named Cocoa [Smith 1996]. ToonTalk is a concurrent con-

straint programming language based on the metaphor of a video
game [Kahn 1996]. A cartoon world is provided that provides
concrete realizations of all of the concepts required in concurrent
constraint programming.

Acknowledgments

This paper is derived from a draft of my thesis proposal. I would
like to acknowledge the valuable contributions to this research
from my advisors, Brad Myers and David Garlan, and from John
Chang.

This research was sponsored by NCCOSC under Contract No.
N66001-94-C-6037 Arpa Order No. B326, and partially by NSF
under grant number IRI 9319969. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of NSF, NCCOSC or the U.S. Government.

References

Anderson, J.R. and R. Jeffries (1985). “Novice LISP Errors:
Undetected Losses of Information from Working Memory.”
Human-Computer Interaction 1: 107-131.

Baecker, R. (1986). Design Principles for the Enhanced Presenta-
tion of Computer Program Source Text. Proceedings of
CHI'86 Conference on Human Factors in Computing Sys-
tems. M. Mantei and P. Orbeton. Boston, ACM: 51-58.

Bonar, J.G. and R. Cunningham (1988). Bridge: Tutoring the
Programming Process. Intelligent Tutoring Systems: Lessons
Learned. J. Psotka, L. D. Massey and S. A. Mutter. Hillsdale,
NJ, Lawrence Erlbaum Associates: 409-434.

Carriero, N. and D. Gelernter (1989). “Linda in Context.” Com-
munications of the ACM 32(4): 444-458.

Cordy, J.R. (1992). Hints on the Design of User Interface Lan-
guage Features – Lessons from the Design of Turing. Lan-
guages for Developing User Interfaces. B. A. Myers. Boston,
Jones and Bartlett Publishers: 329-340.

Cunniff, N., R.P. Taylor and J.B. Black (1989). Does Program-
ming Language Affect the Type of Conceptual Bugs in
Beginners' Programs? A Comparison of FPL and Pascal.
Studying the Novice Programmer. E. Soloway and J. C. Spo-
hrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 419-429.

du Boulay, B. (1989). Some Difficulties of Learning to Program.
Studying the Novice Programmer. E. Soloway and J. C. Spo-
hrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 283-299.

Fitter, M.J. and T.R.G. Green (1979). “When Do Diagrams Make
Good Computer Languages?” International Journal of Man-
Machine Studies 11: 235-261.

Goodman, D. (1987). The Complete HyperCard Handbook. New
York, Bantam Books.

Gould, L. and W. Finzer (1984). Programming by Rehearsal.
Palo Alto, CA, Xerox Corporation

:

133.

Gray, W. and J.R. Anderson (1987). Change-Episodes in Coding:
When and How Do Programmers Change Their Code.
Empirical Studies of Programmers: Second Workshop. G. M.

J. Pane - A Programming System for Children that is Designed for Usability 8

Olson, S. Sheppard and E. Soloway. Norwood, NJ, Ablex:
185-197.

Green, T.R.G. and M. Petre (1992). When Visual Programs are
Harder to Read than Textual Programs. Human-Computer
Interaction: Tasks and Organisation, Proceedings of ECCE-6
(6th European Conference on Cognitive Ergonomics). G. C.
van der Veer, M. J. Tauber, S. Bagnarola and M. Antavolits.
Rome, CUD.

Green, T.R.G. and M. Petre (1996). “Usability Analysis of Visual
Programming Environments: A 'Cognitive Dimensions'
Framework.” Journal of Visual Languages and Computing
7(2): 131-174.

Grice, H.P. (1975). Logic and Conversation. Syntax and Seman-
tics III: Speech Acts. P. Cole and J. Morgan. New York, Aca-
demic Press.

Gugerty, L. and G.M. Olson (1986). Comprehension Differences
in Debugging by Skilled and Novice Programmers. Empiri-
cal Studies of Programmers. E. Soloway and S. Iyengar.
Washington, DC, Ablex Publishing Corporation: 13-27.

Halasz, F. and T.P. Moran (1982). Analogy Considered Harmful.
Proceedings of Human Factors in Computer Systems: 383-
386.

Halvorson, M. (1996). Learn Visual Basic Now: Everything You
Need to Teach Yourself the Newest Version of Microsoft
Visual Basic. Redmond, Washington, Microsoft Press.

Hill, R.D. (1986). “Supporting Concurrency, Communication,
and Synchronization in Human-Computer Interaction -- The
Sassafras UIMS.” ACM Transactions on Graphics 5(3): 179-
210.

Hoc, J.-M. and A. Nguyen-Xuan (1990). Language Semantics,
Mental Models and Analogy. Psychology of Programming.
J.-M. Hoc, T. R. G. Green, R. Samurçay and D. J. Gilmore.
London, Academic Press: 139-156.

Hübscher, R., Ed. (1996). Problem-Centered Visual Language
Benchmarks, http://www.cc.gatech.edu/people/home/roland/
VL-Benchmarks.html.

Kahn, K. (1996). “Drawings on Napkins, Video-Game Anima-
tion, and Other Ways to Program Computers.” Communica-
tions of the ACM 39(8): 49-59.

Lewis, C. and G.M. Olson (1987). Can Principles of Cognition
Lower the Barriers to Programming? Empirical Studies of
Programmers: Second Workshop. G. M. Olson, S. Sheppard
and E. Soloway. Norwood, NJ, Ablex: 248-263.

Mayer, R.E. (1989). The Psychology of How Novices Learn
Computer Programming. Studying the Novice Programmer.
E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence
Erlbaum Associates: 129-159.

Mendelsohn, P., T.R.G. Green and P. Brna (1990). Programming
Languages in Education: The Search for an Easy Start. Psy-
chology of Programming. J.-M. Hoc, T. R. G. Green, R.
Samurçay and D. J. Gilmore. London, Academic Press: 175-
200.

Modugno, F., T.R.G. Green and B.A. Myers (1994). Visual Pro-
gramming in a Visual Domain: A Case Study of Cognitive
Dimensions. People and Computers IX: Proceedings of the
HCI'94 Conference. G. Cockton, S. W. Draper and G. R. S.
Weir. Glasgow, Cambridge University Press: 91-108.

Myers, B.A. (1992). “Demonstrational Interfaces: A Step
Beyond Direct Manipulation.” IEEE Computer 25(8): 61-73.

Myers, B.A., R.C. Miller, R. McDaniel and A. Ferrency (1996).
Easily Adding Animations to Interfaces Using Constraints.
Proceedings of ACM SIGGRAPH Symposium on User Inter-
face Software and Technology. Seattle, WA: 119-128.

Nardi, B.A. (1993). A Small Matter of Programming: Perspec-
tives on End User Computing. Cambridge, MA, The MIT
Press.

Newell, A. and S.K. Card (1985). “The Prospects for Psychologi-
cal Science in Human-Computer Interaction.” Human-Com-
puter Interaction 1(3): 209-242.

Nielsen, J. (1993). Usability Engineering. Chestnut Hill, MA, AP
Professional.

Onorato, L.A. and R.W. Schvaneveldt (1986). Programmer/Non-
programmer Differences in Specifying Procedures to People
and Computers. Empirical Studies of Programmers. E. Solo-
way and S. Iyengar. Washington, DC, Ablex Publishing Cor-
poration: 128-137.

Pane, J.F. and B.A. Myers (1996). Usability Issues in the Design
of Novice Programming Systems. Pittsburgh, PA, Carnegie
Mellon University

:

85.

Papert, S. (1980). Mindstorms: Children, Computers, and Power-
ful Ideas. New York, Basic Books.

Pausch, R., M. Conway and R. DeLine (1992). “Lesson Learned
from SUIT, the Simple User Interface Toolkit.” ACM Trans-
actions on Information Systems 10(4): 320-344.

Repenning, A. and T. Sumner (1995). “Agentsheets: A Medium
for Creating Domain-Oriented Visual Languages.” Com-
puter: 17-25.

Sime, M.E., T.R.G. Green and D.J. Guest (1977). “Scope Mark-
ing in Computer Conditionals: A Psychological Evaluation.”
International Journal of Man-Machine Studies 9: 107-118.

Smith, D.C., A. Cypher and K. Schmucker (1996). “Making Pro-
gramming Easier for Children.” interactions 3(5): 59-67.

Soloway, E., S. Jackson, J. Klein, C. Quintana, J. Reed, J. Spit-
ulnik, S. Stratford, S. Studer, J. Eng and N. Scala (1996).
Learning Theory in Practice: Case Studies of Learner-Cen-
tered Design. Proceedings CHI'96 Conference on Human
Factors in Computing Systems. Vancouver, BC, Canada:
189-196.

